Double power-law behavior of firm size distribution in China

Xiong – Aimin

Department of Systems Science, Beijing Normal University

collaborators:

Prof. Chen Xiao-Song (ITP-CAS) Doc. Zhu Xiao-Wu (ITP-CAS) Prof. Han Zhan-Gang (DSS-BNU)

Outline

background and motivation

• empirical result of Chinese data

theoretical model

comparison between theory and data

Background:

firm size distribution

- firm size distribution (FSD) has been studied by both economists and econo-physicists.
 (firm size: employee, asset, sales, revenue, profit, income ...)
- Gibrat's model" [1] \rightarrow log-normal distribution
- early empirical researches:
 - log-normal distribution fits data fairly well except for tails

[1]. R. Gibrat. Les Inegalites Economiques. Sirey, Paris (1931).

Background: log-normal distribution

[2]. Michael. Stanley et. al. *Economics Letters*, 49, 453-457 (1995).[3]. Johannes Voit. *Advances in Complex Systems*, 4, 149-162 (2001).

Background:

power-law at upper tail (large firms)

Cumulative distribution of the best 85375 Japanese firm's income.[4]

size-rank distribution top 500 Chinese firm's revenue from 2002 to 2007. [5]

[4]. K. Okuyama, M. Takayasu, and H. Takayasu. *Physica A*, 269, 125-131 (1999).
[5]. Jianhua Zhang, Qinghua Chen, and Yougui Wang. *Physica A*, 388, 2020-2024 (2009).

Motivation:

lower tail & developing county

less attention was focused on the lower part.

few investigations on developing countries

We will study

probability distribution function (instead of rank-size distribution) of Chinese firms

both empirically and theoretically

Empirical result: dataset: BvD-QIN

- Burau van Dijk Electronic publishing.
- information on 306,555Chinese firms.
- the distribution of employee and asset.

year	2003	2004	2005	2006	2007
Employee	41,701	32,107	233,213	193,133	168,917
Asset	$156,\!623$	223,133	$232,\!659$	$195,\!155$	168,594

《QIN—Chinese company information in an instant》

- not log-normal
- straight lines at both tails
 - double power-law distribution (DPLD)

Theoretical Model: Gibrat's model (GM)

• Gibrat's Law of proportionate effect [1] $x(\tau+1) = (1+\varepsilon_{\tau})x(\tau), \ln x_{t} = \ln x_{0} + \sum_{\tau=t_{0}}^{t-1} g_{\tau}, \quad g_{\tau} = \ln(1+\varepsilon_{\tau})$

x(t): firm size at time t; gt: growth rate at time t in logarithmic scale.

central limit theorem: ln x – ln x₀ is a normal distribution (appropriate growth rates {g_t} and sufficiently large time t-t₀).

[1]. R. Gibrat. Les Inegalites Economiques. Sirey, Paris (1931).

Model:

Gibrat's model $(GM) + \dots$

identical and independent {gt}

$$p_x(x_t, t | x_0, t_0) = \frac{1}{\sqrt{2\pi T} \sigma x_t} \exp\left\{-\frac{[\ln x_t - \ln x_0 - uT]^2}{2\sigma^2 T}\right\}$$

• u --- expectation; σ^2 --- variance; $T = t - t_0$ --- age

• the size distribution of firms registered at same time toand with same initial size x0 is log-normal.

> distribution of all firms:

- initial size distribution (ISD)
- age distribution (AD)

10^{-€}

10⁻⁶

 10^{2}

 10^{3}

10⁴

10

Sales

assume Chinese new firms are also log-normal distributed:

$$p_0(x_0|t_0) = \frac{1}{\sqrt{2\pi}B(t_0)x_0} \exp\left\{-\frac{\left[\ln x_0 - A(t_0)\right]^2}{2B(t_0)^2}\right\}$$

[6]. L. A. N. Amaral, et. al. J. Phys. I France, 7, 621-633 (1997).

Model:

GM + ISD + age distribution (AD)

• **assumption:** the number of firms, in accord with the economy, increases at constant rate λ :

 $n(\tau + 1) = (1 + \lambda)n(\tau). \quad n(\tau) = n(t) \exp[\lambda(\tau - t)]$

n(t): the number of firms registered in year t.

> the age distribution of firms is exponential:

$$p_{t_0}(t_0|t) = \frac{n(t_0)}{\int_{-\infty}^t d\tau n(\tau)} = \lambda \exp[\lambda(t_0 - t)] = \lambda e^{-\lambda T}$$

Model: $GM + ISD + AD = \dots$

size distribution of all firms:

 $p_x(x_t,t) = \int_{-\infty}^t dt_0 \, p_t(t_0|t) \int_0^\infty dx_0 \, p_0(x_0|t_0) p_x(x_t,t|x_0,t_0)$

> probability distribution function (PDF):

$$p_x(x_t) = \frac{\alpha\beta}{2(\alpha+\beta)} \left\{ x_t^{-\alpha-1} \exp\left(\alpha A + \frac{1}{2}\alpha^2 B^2\right) \left[1 + \operatorname{erf}\left(\frac{\ln x_t - A - \alpha B^2}{\sqrt{2}B}\right) \right] + x_t^{\beta-1} \exp\left(-\beta A + \frac{1}{2}\beta^2 B^2\right) \left[1 - \operatorname{erf}\left(\frac{\ln x_t - A + \beta B^2}{\sqrt{2}B}\right) \right] \right\},$$
$$\alpha = \frac{1}{\sigma^2} \left(\sqrt{2\lambda\sigma^2 + u^2} - u \right), \quad \beta = \frac{1}{\sigma^2} \left(\sqrt{2\lambda\sigma^2 + u^2} + u \right)$$

Model:

... = double power-law distribution

> power-law at both tails:

 $\lim_{x_t \to \infty} p_x(x_t, t) = \frac{\alpha \beta}{\alpha + \beta} \kappa_{t,\alpha} x_t^{-\alpha - 1}, \quad \lim_{x_t \to 0} p_x(x_t, t) = \frac{\alpha \beta}{\alpha + \beta} \kappa_{t,-\beta} x_t^{\beta - 1}$

- $-\alpha 1$ = upper exponent, always negative;
- $\beta 1 =$ lower exponent, usually positive;
- A ~ turning point of ln x;
- B ~ width of turnover range

Typical plot with (1,2,10,0.5)

> the number of firms registered in year t (n) and before t (N) are roughly exponential (decreasing) from 1978 to 2002.

register date: 4450 available; 1978-2002 (3970, 89.2%); before 1979 (56, 1.2%), after 2002 (424, 9.6%)

Comparisons IV :

fitting exponents

Summary

 empirical result of Chinese firms (database BvD-QIN): double power-law distribution

theoretical explanation

Gibrat's model + lognormal initial size distribution + exponential age distribution = DPLD

comparison:

- exponential age distribution roughly supported by data:
- good fits: (two sizes) * (5 years) $R^2 > 0.98$
- economy dependence: asset different from employee

Discussion

\succ other economies:

- initial size: log-normal? power-law? ...
- age: exponential? + uniform? ...
- > other organizations:
 - cities size?
 - personal income, wealth ... ?

Model:

stationary

exponents are stationary

$$\alpha = \frac{1}{\sigma^2} \left(\sqrt{2\lambda\sigma^2 + u^2} - u \right), \ \beta = \frac{1}{\sigma^2} \left(\sqrt{2\lambda\sigma^2 + u^2} + u \right)$$

> the expectation A and variance B^2 of the initial size (in logarithmic scale)

$$A(t_0) = A(t) - u_0(t - t_0), \quad B^2(t_0) = B(t)^2 - \sigma_0^2(t - t_0)$$

▶ exponents still stationary, A,B could vary with time replacing A, B by A(t), B(t)
 u, σ by u' = u - u₀, σ'² = σ² - σ₀².
 ▶ β > α, if u > 0

Model:

economy dependence

> exponents are economy dependent

$$\alpha = \frac{1}{\sigma^2} \left(\sqrt{2\lambda\sigma^2 + u^2} - u \right), \ \beta = \frac{1}{\sigma^2} \left(\sqrt{2\lambda\sigma^2 + u^2} + u \right)$$

- different indexes of same economy: u and σ^2 are usually different
- same index of different economies: u, σ^2 and λ are usually different

Appendix I: exponents

• the exponents for employee and asset are different.

$$\alpha = \frac{1}{\sigma^2} \left(\sqrt{2\lambda\sigma^2 + u^2} - u \right), \quad \beta = \frac{1}{\sigma^2} \left(\sqrt{2\lambda\sigma^2 + u^2} + u \right)$$

	year	$\alpha(\text{error})$	$\beta(\text{error})$	A(error)	B(error)	Adj. R^2
employee	2003	1.175(0.050)	1.553(0.190)	4.302(0.137)	0.624(0.150)	0.980
	2004	1.228(0.050)	1.140(0.222)	4.523(0.190)	0.999(0.136)	0.989
	2005	1.430(0.043)	2.132(0.280)	4.583(0.117)	0.788(0.091)	0.989
	2006	1.393(0.038)	2.140(0.220)	4.517(0.102)	0.702(0.088)	0.991
	2007	1.306(0.031)	2.386(0.195)	4.488(0.081)	0.689(0.070)	0.993
asset	2003	1.128(0.039)	2.047(0.527)	7.451(0.178)	1.215(0.109)	0.986
	2004	1.098(0.037)	2.003(0.377)	7.307(0.156)	1.078(0.111)	0.985
	2005	1.054(0.032)	1.995(0.233)	7.402(0.123)	0.973(0.096)	0.987
	2006	1.049(0.029)	2.061(0.190)	7.604(0.113)	0.931(0.089)	0.988
	2007	0.995(0.028)	2.583(0.197)	7.625(0.106)	0.875(0.074)	0.988

exponents calculation

- For employee growth 06-07: $\lambda = 0.1, u = 0.00318, \sigma = 0.18517 \Rightarrow \alpha = 2.324, \beta = 2.510$
- ▹ for asset growth 06-07:

 $\lambda=0.1, u=0.08495, \sigma=0.17493 \Longrightarrow \alpha=0.998, \beta=6.550$

- > qualitatively right: larger u, lager $\beta \alpha$
- yuantitatively wrong: (1.306,2.386);(0.992,2.414)

$$\alpha = \frac{1}{\sigma^2} \left(\sqrt{2\lambda\sigma^2 + u^2} - u \right), \quad \beta = \frac{1}{\sigma^2} \left(\sqrt{2\lambda\sigma^2 + u^2} + u \right)$$

Appendix I: exponents calculation

 \succ more realistically, A and B are functions of T

 $A(T) = A' - u_0 T, \quad B^2(T) = B'^2 - \sigma_0^2 T,$

> u, σ replaced by $u' = u - u_0, \sigma'^2 = \sigma^2 - \sigma_0^2$

> difficult to calculate $u, \sigma, u_0, \sigma_0^2$.

Appendix I: exponents --- Zipf's law?

$$\alpha = \frac{1}{\sigma^2} \left(\sqrt{2\lambda\sigma^2 + u'^2} - u' \right),$$

 $u' = u - u_0.$

If

If further

$$\lambda \approx u' = u - u_0,$$
$$\alpha \approx 1.$$

Appendix II: developed country

- developed country experienced a long enough developing progress,
- ▶ the number of firms increased exponentially
 → exponential age distribution
- ignore the firms after the development, the firms size distribution is also a double power-law distribution?

developed country --- USA

- sales of ~3000 USA publicly-traded manufacturing companies in the years 1974-1993.
- (database: Compustat)
- It is visually apparent that the distribution exhibit power-law at lower tail?

J. Phys. I France 7 (1997) 621

developed country --- USA

 sales and asset of
 ~10000 USA firms
 in year 1995-2003
 [Kaizoji2006, Evolutionary and Institutional Economics Review]

(database: Bloomberg Ltd)

power-law at lower tail?

developed country --- Japan

 sales and asset of ~3000 Japanese firms in year 1995-2003.

[Kaizoji2006, Evolutionary and Institutional Economics Review]

(database: Bloomberg Ltd)

power-law at both tail?

developed country --- German

sales of 405
German firms in years 1987-1997
[J. Voit 2001, Advances in Complex Systems]
(database: Datastream & Hoppenstedt)

power-law at lower tail?

Fig. 1. Size distribution of German business firms. Dots: empirical data, line: fit to a log-normal distribution, parameters $\langle \ln(S) \rangle = 11.8$, $\exp\langle \ln(S) \rangle = 137 \times 10^6$ DM, standard deviation = 2.4.

• it is visually apparent that the distribution exhibit power-law at lower tail.

double power-law?

data? ! ...

extensions of central limit theorem

- Lack of identical distribution: The central limit theorem also applies in the case of sequences that are not identically distributed, provided one of a number of conditions apply.
 - Lyapunov condition

$$\lim_{n \to \infty} \frac{1}{s_n^{2+\delta}} \sum_{i=1}^n \mathbb{E}[|X_i - \mu_i|^{2+\delta}] = 0$$

Lindeberg condition

$$\lim_{n \to \infty} \sum_{i=1}^{n} \mathbb{E}\left(\frac{(X_i - \mu_i)^2}{s_n^2} : |X_i - \mu_i| > \varepsilon s_n\right) = 0$$

Under weak dependence: ...

http://en.wikipedia.org/wiki/Central_limit_theorem#Extensions_to_the_theorem

bankrupt, merger, split?

- firms bankrupt randomly?
- not affect the age distribution and initial size distribution?
- not affect the FSD?

J. Phys. I France 7 (1997) 621