

中国科学院紫金山天文台 中国科技大学 高能物理所 兰州近代物理所

二0一0年三月十八日北京

1引言 2面临的挑战和几个技术关键 3预研工作的主要任务和进展 4下一步的研究计划

1 引言

1.1 物理目标

证实、刷新ATIC的重要观测结果,寻找空间暗物质的湮灭产物(e+e-)

1 描出入射高能带电粒子 的轨迹,配合重建的簇射 分布轴线,确定系统的物 理接受度。 塑料闪烁望远镜 2区分电子和光子事件

BGO电磁量能器 1记录高能电子、光子簇射能 量沉积,从而测量入射高能电 子、光子的能量。

> 2记录簇射能量沉积的空间分 布,以便鉴别删除空间中高能 强子(主要是质子)的背景

1.3 量能器系统的设计指标

- 观测能段10GeV-10TeV
- 动态范围: 0.5MIPs到10⁵MIPs
- 探测粒子种类:电子 伽玛射线
- 能量分辨(1.5%@800GeV)
- 空间分辨(0.5度@500GeV)
- 本底水平 (小于1%@800GeV)
- 伽玛和电子的区分优于1%

几何和物理参数: BGO量能器由576根尺寸为2.5x2.5x30厘米³的 BGO晶体构成。如图所示组合成横向60x60厘米²深为30厘米的长方体。 晶体条分12层相互正交排列,由各根晶体耦合的光电倍增管读出的簇射 能量分布中心可以重建簇射的中轴。

BGO的物理参数

Density	7.13g/cm3
Nuclear interaction length	22 cm
Radiation length	1.12cm
Moliere length	2.7 cm
Energy loss (for MIPs)	9.2 MeV/cm

读出通道3x576=1728通道

total:26.8X₀, 1.36NIL

2面临的挑战和几个技术关键

■ 极高能量。

- 极宽的动态范围
- 从高的质子背景事例中挑选稀有的高能电子、光子事例。
- 空间环境带来的特殊挑战(载荷和功耗的限制)

2.1 极高能量

现有的对撞机谱仪电磁量能器测量电子光子的最高能量在 100GeV以下,现有的电磁量能器的理论和实践的研究也多数 在此能量附近。我们的测量区间从10GeV到10000GeV。 实验可以借鉴的全吸收型晶体量能器是L3的BGO量能器, 其能量测量上限为100GeV;还有正在运行的CMS的PWO 晶体电磁量能器,设计测量能量上限为~100GeV。 <pdg data book > 也只给出能量在1GeV到100GeV的 电磁簇射纵向分布的经验公式。

测量能量在100GeV以上的电磁量能器在理论和 实验上需要认真研究和检验

2.2 荧光饱和问题。

高的初始入射电子(光子)簇射产生的末态次级粒子在BGO晶体中沉积 能量应该等比例地产生荧光。按照半经验的Birks公式

$$\frac{dL}{dx} = L_0 \frac{\frac{dE}{dx}}{1 + k_B \frac{dE}{dx}}$$

k_B是描述闪烁荧光饱和特性的参数,一般来说对电子一类的轻带电粒子,k_B=0 不存在荧光饱和问题,而且该公式是针对有机闪烁体提出的,虽然人们发现,在无机闪烁晶体也有类似的饱和效应,但也只是对高线电离密度粒子观测到。例如,文献[1]报道,用6~13MeV质子和6~19MeV的Alpha粒子研究BGO的荧光输出随不同能量的高线电离密度的响应,观测到Alpha比同样能量沉积的质子输出荧光小得多。他们认为线电离密度大于40keV(mg/cm²)(相当于在BGO中28.5MeV/mm)时存在荧光饱和效应。

电子的线电离密度最大~15keV/(mg/cm2)

高能电子(光子)簇射产生的末态次级粒子基本上都是次级电子-正电子, 一般来说不存在荧光饱和问题。用于L3-BGO电磁量能器的实践说明,至 少当能量低于100GeV时不存在荧光饱和问题

[1], E.A. Bakkum et al. Response of BGO scintillation detector

高线电离密度引起荧光饱和,线电离密度低而高体电离密度是否引起荧光 饱和?高达10TeV的电子在BGO中能量沉积分布的模拟结果表明: 在簇射中心能量沉积的极大值处(~17.8cm深)的的半径为1mm长度为1mm 的圆柱内簇射沉积能量分布如下图,给出能量沉积体密度为: 3.7GeVmm⁻³。

对低线能量密度,高体能量密度的电子、正电子,BGO晶体的荧光响应是不是线性? 会不有荧光饱和发生? 必须通过 R&D来回答.

2.3 极宽的动态范围

根据物理要求,量能器必须能够测量E₀=10GeV-10TeV的高能电子、光子的能谱。 由于高能电子、光子在量能器中发生电磁簇射,原初能量E₀是分散地沉积在量能器 的若干晶体条当中。为了以一定的精度测量簇射的能量沉积分布,以便分辨电子和 质子。模拟表明:每根晶体及其耦合的PMT(或其他光电转换器件)以及读出电子 学**必须能正确读出的最小信号相当于0.5MIPs-的沉积能量**,这里的1个MIPs指的 是一个最小电离粒子穿过BGO条(2.5厘米厚度)沉积的能量(2.5x9.2MeV/MIPs =23MeV)形成的荧光输出的电荷信号。最大信号对应的是10TeV电子、光子产生 的簇射在簇射中心对应的晶体上沉积能量(模拟给出E_{dmax}~1.7TeV)。

读出荧光信号的动态范围:

Min:(MeV)	MIPs
11.5	0.5
Max:1.7x10 ⁶	7.4x104

读出电荷量的动态范围跨5个量级,必须通过R&D选择光电转换器件;必须选择合适的电荷读出前端(电荷灵敏放大)的模拟电路和后端的数字电路。

2.4 对高能质子背景的鉴别和排除

根据原初宇宙线的实验数据(下图),质子是原初宇宙线最丰富的成分。

宇宙线中的电子、正电子谱,插图给出正电子与电子通量比

实线描绘质子通量的千分之一。表明在5GeV以下,质子通量为电子通量的 1000倍。100GeV及以上,质子通量比电子通量高出几千倍。

2.5 空间环境对空间探测器的限制

载荷和耗电功率的限制, 仪器的可靠性等

3 预研工作的主要任务和进展

■ 高能量

- 晶体荧光饱和问题?
- 荧光探测元件和相应读出电子学如何满足所要求的动态范围
- 背景排除,实验上和MC对簇射的的横向、纵向分布仔细 研究和比较建立一套有效的对高能质子和高能电子鉴别的 方法。

3.1 高能量对量能器尺度提出的要求

基于电磁簇射的理论,借助于现在广泛运用的电磁簇射的软件包,对构想的上述的BGO量能器在不同能量的电子、光子和质子的注入(垂直)下,簇射的能量沉积分布:

回答量能器的尺度是否足以包括簇射末态的绝大部分的次级粒子?

3.1.1 簇射次级粒子能量沉积的纵向分布

3.1.2 簇射次级粒子数的纵向分布

3.1.3 簇射能量沉积的横向分布

3.1.4 能量泄漏和能量本征分辨率

量能器的纵向深度(12层BGO,26.8rl)基本上可以满足能量分辨要求 (1.5% at 800GeV)。能量分辨基本上受限于能量的泄漏。

3.2 关于BGO晶体荧光饱和问题的预研

3.2.1 实验研究BGO晶体对数十MeV质子的响应

3.2.2 西北核技术研究所的实验借鉴

回答簇射能量沉积密度大于4GeV/mm³时, BGO荧光输出是否线性

Bragg Peak:50MeVx0.1/(0.1)³~5GeVmm⁻³

14MeV质子在Bragg峰处产生的体能量密度和10TeV电子簇射的"热点"体能量密度可比

3.1.1 BGO 晶体对数十MeV质子的响应

HIRFL上,BGO晶体对数十MeV质子的响应特性的检测

HIRFL上的放射性束线

The configuration of beam elements and test counter

Birk Law

The response of crystal to ionizing particles is a nonlinear function of the particle energy.

this nonlinear response is caused by quenching process governed by the stopping power, dE/dx, along the particle path.

$$dL/dx = \text{const.} \frac{dE/dx}{1 + kB dE/dx}$$

while $dE/dx \simeq c \frac{AZ^2}{E}$

Graph

$$\chi^2 / \text{ndf}$$
 10.04 / 6

 2000
 0
 74.1±
 0.45

 2000
 1.131±
 0.04774

 1800
 0
 0
 0

 1600
 0
 0
 0

 1600
 0
 0
 0

 1000
 0
 0
 0

 1000
 0
 0
 0

 1000
 15
 20
 25
 30

 $L(E, A, Z) = a_1 \left(E - a_2 A Z^2 \ln \left| \frac{E + a_2 A Z^2}{a_2 A Z^2} \right| \right)$ V. Avdeichikov. Et al., Nucl. Instr. And Method., A493(2000) 158-166

Energy (MeV)

Energy (MeV)	9.719	12.02	14.24	16.41	18.54	22.75	26.89	31.02
Quenching rate (%)	26.3	23.12	20.7	18.89	17.42	15.16	13.5	12.2

用Na-22的单能伽马射线定标

Quenching Rate

检测结果表明:

表现出对数十MeV质子的荧光饱和效应,但不能认定是因为能量沉积体密度高达5GeVmm⁻³引起的,因为其能量沉积的线密度远超出30MeVmm⁻¹(在BGO中)。

西北核技术研究所的研究结果可以借鉴

第43卷第10期	原子能科学技术	Vol. 43 ,No. 10
2009年10月	Atomic Energy Science and Technology	Oct. 2009

硅酸镥闪烁体γ高剂量率脉冲线性响应上限测量

管兴胤,张子川,张文钰

(西北核技术研究所,陕西西安 710024)

摘要:在"强光一号"高剂量率脉冲伽马装置上,使用李萨如图形法测量了硅酸镥闪烁体的γ高剂量率脉冲 线性响应上限。实验结果表明:硅酸镥闪烁体在脉冲伽马能注量率小于1.9×10¹⁹ MeV/(cm² ·s)时,光输 出为线性;大于此限值时,出现非线性响应现象。

根据伽玛能量注入的实验数据,脉冲宽度,可以求得每个脉冲注入的能量,根据晶体的成分计算它的能量吸收系数。进而求出每立方毫米该晶体吸收能量的体密度高达7000TeVmm⁻³.比10TeV电子在BGO"热点"处的体能量密度~4GeVmm⁻³要超出2x10⁶倍

计划利用BGO样品替代硅酸镥晶体,利用西北核技术研究所的高注入量率的 脉冲辐射场进一步确认,在注量率为~2x10¹³MeV/cm² s下BGO不会有 荧光饱和出现。

(0.5MIPs—8x10⁵MIPs) 3.3 读出光电倍增管及其读出电子学的宽动态范围的实现

3.3.1上海BGO晶体(2.5x2.5x28cm3)光产额的测量: PMT: R5611, 1000V, PMT和晶体硅油耦合。 能谱(Shaping Amp.+MCA)

²²Na在阳极的输出信号。 167.3×0.2/1.274=26.3pc/MeV

动态范围2

3.3.2 不同打拿极读出信号的增益关系

DY8、9、10和A

Gain of Anode .vs. Dynode (-1000V)

动态范围3

Dy8、7、4、1和A 宇宙线的MIPs测试。分别用 1 VME的QDC、
2 Shaping Amp +MCA
3紫台郭建华的VA32读出板
4USTC封长青的VA32读出板

Shaping Ampl.+MCA triggerred by the Hodoscope

Cosmic Ray 用望远镜准直的Dy8的信号。 127.3*0.2=25.46pc/MIPS.

VME QDC triggered by the Hodoscope

1000V下DY10输出信号约为307pc/MIPS. 阳极输~451pc/MeV.

Base I 修改,把DY9换成DY7:800V,readout by the FEE _PMO-GUO Cosmic Ray: DY7 vs DY8。DY7电荷量约为2.4pc/MIP;DY8为6.8pc/MIP

Base II, DY4 vs DY7 800V, readout by FEE_PMO-GUO DY4电荷量约为130fc/MIPS。dy7/dy4=19.12 at 800V

Base II, DY7 vs DY4 800V readout by FEE_USTC-FENG dy7 : 3.6pc/MIPs; dy4: 150fc/MIPs

R5611的各个打拿极对MIPs的响应

	a	d10	d9	d8	d7	d4	
HV=1000V	451pc	307pc	~96 pc ^[1]				
HV=800V			~20pc	6.8pc	3pc	0.14	
HV=800V	/ , dy9/dy8	~2.9;					
	dy8/dy7	~2.26;					
	dy7/dy4	~16					

空气耦合光衰减的初步实验

读出方案及可达到的动态范围

	Dy	7	4	1	remarks
	q/MIPs (pc)	3	0.14	0.009	Att.=1
方案1	FEE Rangs	1.5~12	0.42~12	0.72~12	
	No.of MIPs	0.5~4	3~86	80~1333	0.5~1333
	Dy	7	4	1	remarks
	q/MIPs (pc)	0.15	0.007	0.00045	Att.=1/20
方案2	FEE Rangs	0.075~12	0.525 ~12	0.675 ~12	
	No.of MIPs	0.5~80	75~1714	1500~26666	0.5~26666
	Dy	7	4	1	remarks
方案3	q/MIPs (pc)	0.05	0.0023	0.00015	Att.=1/60
	FEE Rangs	0.025~12	0.46~12	0.675~12	
可行	No.of MIPs	0.5~240	200~5000	4500~80000	0.5~80000

星上读出电子学的考虑

采用挪威Gamma Medica-Ideas 公司的VA32HDR14.2 芯片,每片 有32路电荷测量通道

预研电路设计方案

Pedestal(台阶)及噪声测试

1 Bin (LSB) =1.3 fC

PMT 测试

测试 现场

- 1.已完成读出电子学预研
 - 电子学噪声小于1.5 fC
 - 动态范围-3pC ~ +12.5pC
 - PMT测试结果,表明电子学工作正常
- 2.计划
 - 开始宇宙线小系统读出电子学(FEE)与读出控制模块 (Sub-DAQ)的设计
 - 进行辐照实验的电子学考虑
 - 触发的考虑
 - 继续配合探测器组进行PMT实验

3.4 对高能质子背景的排斥能力的MC模拟研究

下面引用紫台伍健研究员的一些模拟结果

1 在能量较低的情况下(如100GeV及以下),电子与质子的簇射 如Fermi等实验,可以通过比较探测器浅层簇射轮廓区分 2 在能量很高的情况下(~TeV能区),上述方法则不再适用

如何排斥几千倍于电子光子信号的质子背景?

数据样本

• Electron

• Proton

• Gamma

表现簇射轮廓展宽的R.M.S值定义

$$(r.m.s.)^{2} = \frac{\sum_{i=1}^{n} E_{i}(x_{i} - x_{c})^{2}}{\sum_{i=1}^{n} E_{i}}$$

F-Value(第12层,即F12) (=该层能量沉积分数*R.M.S.的平方)

F11 与 F12的关系 ^{黑:电子, 红:质子}

利用F-Value判选e/p的情况

不同 F-Value 值 e/p 判选情况-第 12 层-

	1					
能段₊	F12<12.		F12<11.		F12<10.	
(GeV) 🖉	电子效率。	质子混入。	电子效率。	质子混入。	电子效率。	质子混入。
100-200 ₽	96.7%₀₀	1.1%o.	94.8%₀ ₀	0.9%o+	91.4 % ₀₀	0.7%o
300-400 ₽	95.1 ‰∗	0.5%	91.9 % ₀	0.4%o.	86.4%»	0.3%.
500-600 ₽	91.8 % ~	0.7%o.	87.5% ₀₀	0.5%	80.1%»	0.4%o+
700-800⊷	89.7% ₀₊₀	0.4%o₀	83.7% ₀₀	0.2%o₀	7 4.5% ₀₀	0.1%o₀

再结合其他条件所能达到的分辨效果

4 下一步的研究计划

前一段的研究工作重点在可行性研发阶段,下一步在继续完善可行性 研究的同时,为工程实施积累数据。

4.1 完善可行性研究,

1 打拿极1的灵敏度的实验测定:光源?高能粒子束?宇宙线MIPs? 2 选择合适可靠的荧光衰减方式:加吸光片?把BGO荧光衰减数十倍 3 BGO在强注量率的辐射场中荧光响应特性。荧光饱和问题。 4 R5611 dy1、4、7读出的分压系统的合理布局,压低噪声水平

4.2 逐一测试量能器各个器件,建立数据库。

1 PMT增益测量,逐一PMT登记收录数据入库,

2晶体荧光产额和荧光输出均匀性测量,逐一晶体数据入库

3 宇宙线刻度实验,将量能器的每一通道dy4、dy7 MIPs谱登录进库。

BGO晶体对MIPs粒子的响应特性

每一组BGO(X,Y坐标) 的刻度结果建立相应的 数据库。为太空运行 BGO量能器的高能质子 (punch through)实时 刻度提供刻度参数;为 系统的物理接收度的模 拟计算和刻度提供重要 参数

方案1 采用兰州所的塑料闪烁阵列描迹仪原形,同时检验描 迹仪的描迹性能。

24通道宇宙线检测样品盒

LED驱动的PMT增益刻度的暗箱

正在获取宇宙线MIPs的VA32 FEE+ODC板

