### Breit-wigner enhancement with kinetic decoupling

Peng-fei Yin

Laboratory of Particle Astrophysics, IHEP

2010.12.15





Breit-Wigner enhancement

Kinetic decoupling

Breit-Wigner enhancement with Kinetic decoupling



## I. Large Boost factor



Dark matter implication annihilating DM decaying DM

#### annihilating dark matter implication

Large positron flux-> large  $\langle \sigma v \rangle$  in the galaxy halo  $\sim 10^{-23} \text{ cm}^3 \text{s}^{-1}$ 

Thermal relic density->  $\langle \sigma v \rangle$  in the epoch of freeze-out ~10<sup>-26</sup> cm<sup>3</sup>s<sup>-1</sup>

#### **Boost factor**

$$B = \frac{\langle 0V/|_{\text{halo}}}{3 \times 10^{-26} \, \text{cm}^3 \text{s}^{-1}}$$

- Non-thermal production
- DM substructure
- Sommerfeld enhancement
- Breit-Wigner enhancement

Feldman, Liu, Nath 2008 Ibe, Murayama, Yanagida 2008 Guo, Wu 2009



#### Cross section via resonance

 $\Gamma/M$ 

s-channel resonance

$$\sigma = \frac{16\pi}{s\overline{\beta_i}\beta_i} \frac{M^2\Gamma^2}{(s-M^2)^2 + M^2\Gamma^2} B_i B_f$$

$$M_{\text{DM}} = \frac{M^2}{s\overline{\beta_i}\beta_i} \frac{s=4m^2 + m^2v^2}{M^2 = 4m^2(1-\delta)} \qquad \gamma = \frac{\Gamma}{M}$$
Resonance mass Resonance decay width

Parameterize the cross section as

$$\sigma v = \sigma_0 \frac{\delta^2 + \gamma^2}{(\delta + z)^2 + \gamma^2} \qquad \sigma v \to \sigma_0, \text{ if } v \to 0$$
$$s = 4\text{m}^2(1+z) \qquad \sigma_0 = \frac{32\pi B_i B_f}{M^2 \overline{\beta}_i} \frac{\gamma^2}{\delta^2 + \gamma^2}$$



# Solving Boltzmann equation

Boltzmann equation

 $\frac{dY}{dx} = -\lambda' x^{-2} \langle \sigma v \rangle \ (Y^2 - Y_{eq}^2) \qquad x \equiv m / T \qquad Y \equiv n / s$ 

$$s(x) = \frac{2\pi^2 g_* s}{45} \frac{m^3}{x^3} \qquad H(x) = \sqrt{\frac{4\pi^3 g_*}{45m_{pl}^2}} \frac{m^2}{x^2} \qquad \lambda' \equiv s/H|_{x=1} \simeq 0.264(g_{*s}/g_{*}^{1/2})m_{pl}m_{x}$$

The DM relic density can be obtained

$$\Omega_X h^2 = 2.74 \times 10^8 \frac{m}{GeV} Y_\infty \sim 0.1$$

 $\langle \sigma v \rangle$  can be parameterized as  $\sigma_0 x^{-n}$  ( $v \propto T_x^{1/2}$ ), associate with partial waves s,p, ...with powers of n=0,1,...

As long as  $\Gamma \sim H$  then  $Y \sim Y_{eq}$ . The particles will freeze out if the annihilation rate is smaller than universe expansion rate  $Y_{\infty} \simeq (n+1)x_f^{n+1} / \lambda'\sigma_0 \qquad x_f \sim \ln[c(c+2)a\lambda'\sigma_0]$ 



#### Boost factor predicted by Breit-Wigner effect

**Rewrite Boltzmann equation as** 

$$\frac{dY}{dx} = -\frac{\lambda}{x^2} \frac{\delta^2 + \gamma^2}{(\delta + \xi x^{-1})^2 + \gamma^2} (Y^2 - Y_{eq}^2) \qquad x = m/T \sim v^-$$

The cross section of DM increase as temperature drops, DM continue to annihilate after  $X_f$  until the cross section reaches maximum value







#### Numerical results



Large boost factor for very small parameters

Large boost factor for both physical pole and unphysical pole

Different behaviors due to different evolution of cross sections



# II. Kinetic decoupling

Chemical equilibrium: particle number reaction rate is fast Gelmini 2010 Chemical decoupling: particle number reaction is not efficient  $\Gamma(T_f) \sim H(T_f) \qquad \Gamma(T_f) = n\sigma v |_{T_f}$ 



 kinetic equilibrium: momentum exchange rate is fast
 kinetic decoupling: the exchange of momentum with the radiation is not efficient

 $\Gamma(T_{kd}) \sim H(T_{kd})$ 

It is important to study kinetic decoupling for structure formation. For example, what is the smallest mass scale of DM structures



### DM temperature

- $T_x = T \propto R^{-1} \qquad v \propto T^{-1/2}$
- \* After kinetic decoupling, DM temperature decrease as  $T_x \propto R^{-2}$   $v \propto T^{-1}$  v
- **DM temperature is determined by**  $T_{x} = \begin{cases} T, T_{x} > T_{kd} \\ T^{2} / T_{kd}, T_{x} \leq T_{kd} \end{cases}$





#### More precise results

100

Solving equation  $\frac{dT_x}{dT} - [2 + aA(\frac{T}{m})^{n+2}]\frac{T_x}{T} = -a(\frac{T}{m})^{n+2}$ If A=1  $T \rightarrow \infty$  $T_r \rightarrow T$  $T_x \to \left(\frac{a}{n+2}\right)^{1/(n+2)} \Gamma\left[\frac{n+1}{n+2}\right] \frac{T^2}{m} \qquad T \to 0$ Bringmann, hofmann 2006 Kinetic decoupling temperature 1  $T_{kd} = m((\frac{a}{n+2})^{1/(n+2)} \Gamma[\frac{n+1}{n+2}])^{-1} \qquad = 2$ 0.3 10 0.5 1 50 T [MeV]



#### Kinetic decoupling of SUSY particles

Calculate elastic neutralino-SM fermion cross section



- Momentum transfer  $\frac{\Delta p_x}{p_x} \sim \frac{T}{m}$ momentum transfer rate  $n \langle \sigma v_s \rangle \frac{T}{m}$ 
  - Kinetic decoupling temperature

$$T_{kd} \simeq [0.0012 \frac{m_{pl}}{m_x (m_{\tilde{l}}^2 - m_x^2)}]^{-\frac{1}{4}}$$

typical value O(10)~O(10<sup>2</sup>) Mev

Chen, Kamionkowski, Zhang 2001 Hofmann, Schwarz, Stocker 2001



# Kinetic decoupling effect for velocity-dependent interaction



P wave scattering and Sommerfeld effect



#### Ill Resonance cross section with kinetic decoupling

DM temperature

$$T_{x} = \begin{cases} T, T_{x} > T_{kd} \\ T^{2} / T_{kd}, T_{x} \leq T_{kd} \end{cases}$$
  
Thermal averaged cross section

$$\langle \sigma v \rangle = \frac{1}{n_{eq}^2} \frac{m g_i^2}{32 \pi^4 x_x} \int_{4m^2}^{\infty} p_{eff} w_{eff} K_1 (\frac{x_x \sqrt{s}}{m}) ds$$

$$n_{eq} = \frac{g_i}{2\pi^2} \frac{m^3}{x_x} K_2(x_x)$$

$$w_{eff} = 4E_1 E_2 \sigma v \qquad p_{eff} = \frac{1}{2} \sqrt{s - 4m^2}$$



### Modified cross section



- After kinetic decoupling, DM temperature decreases rapidly and the cross section increases significantly
- The cross section for Small x<sub>kd</sub> increases more quickly
- **\*** The maximum value of cross section increases as  $\delta$ ,  $\gamma$  decrease

![](_page_14_Picture_0.jpeg)

![](_page_14_Picture_1.jpeg)

![](_page_14_Figure_2.jpeg)

Small x<sub>kd</sub> will decrease DM relic density significantly, and only allow small boost factor

![](_page_15_Picture_0.jpeg)

## DM elastic cross section

- We need the Xf->Xf elastic scattering cross section
- Assume effective interaction Lagrangian

 $\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^{2}s} \sqrt{\frac{s}{s-4m^{2}}g_{A}^{2}g_{B}^{2} |R_{0a}|^{2} |M_{a}'|^{2}}$ for annihilation  $\sigma_{0} = \frac{1}{32\pi m^{2}} \frac{g_{A}^{2}g_{B}^{2}}{M^{4}(\delta^{2}+\gamma^{2})} \int \frac{|M_{a}'|^{2}}{4\pi} d\Omega$ 

for elastic scattering

$$\sigma v_{s} = \frac{1}{16\pi m^{2}} \frac{g_{A}^{2} g_{B}^{2}}{M^{4}} \int \frac{|M_{s}'|^{2}}{4\pi} d\Omega$$

we can express  $\sigma v_s$  by  $\sigma_0$ . Finally we achieve  $\sigma v_s = 2\sigma_0(\delta^2 + \gamma^2) \int \frac{|M'_s|^2 d\Omega}{|M'_a|^2 d\Omega} \sim a\sigma_0(\delta^2 + \gamma^2) \frac{T^2}{m^2}$ For example, for Z' model  $|M'_a|^2 = 32m^4$ ,  $|M'_s|^2 = 8m^2 E_l^2 \sim 8m^2 T^2$ 

![](_page_16_Picture_0.jpeg)

#### Kinetic decoupling temperature

![](_page_16_Figure_2.jpeg)

$$T_{kd} \sim \left[\frac{9.088 \cdot g_*^{1/2} m^3}{a_k \sigma_0 (\delta^2 + \gamma^2) m_{pl}}\right]^{\frac{1}{4}} \sim 110.5 \left[\frac{0.5}{a_k}\right]^{\frac{1}{4}} \left[\frac{10^{-6} GeV^{-2}}{\sigma_0}\right]^{\frac{1}{4}} \left[\frac{10^{-10}}{\delta^2 + \gamma^2}\right]^{\frac{1}{4}} \left[\frac{g_*}{100}\right]^{\frac{1}{8}} \left[\frac{m}{1TeV}\right]^{\frac{3}{4}}$$

![](_page_17_Picture_0.jpeg)

# Numerical results of boost factor

![](_page_17_Figure_2.jpeg)

**Boost factor** 

$$B = \frac{\langle \sigma v \rangle|_{\text{halo}}}{3 \times 10^{-26} \, \text{cm}^3 \text{s}^{-1}} = \frac{\langle \sigma v \rangle|_{v=10^{-3} \text{c}}}{3 \times 10^{-26} \, \text{cm}^3 \text{s}^{-1}} \neq \frac{\langle \sigma v \rangle|_{v=0}}{3 \times 10^{-26} \, \text{cm}^3 \text{s}^{-1}}$$

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_1.jpeg)

After kinetic decoupling, rewrite Boltzmann equation as

$$\frac{dY}{dx} = \frac{\lambda}{x^2} \frac{\delta^2 + \gamma^2}{(\delta + \xi x_{kd} x^{-2})^2 + \gamma^2} (Y^2 - Y_{eq}^2)$$
$$x_b \sim \max[\delta, \gamma]^{-1/2} \sqrt{x_{kd}}$$
$$B \sim x_b / x_f \sim \max[\delta, \gamma]^{-1/2} \sqrt{x_{kd}} / x_f$$

It seems we could still achieve a arbitrary large boost factor, but it is not the case for  $\delta \simeq \pi \leq O(10^{-6})$  ,  $\pi = \pi (mm [\delta x]/x^2)^2 < \pi$ 

for  $\delta \simeq \gamma \leq O(10^{-6})$   $\sigma v_{halo} \sim \sigma_0 (\max[\delta, \gamma]/v_{halo}^2)^2 < \sigma_0$ 

To understand maximum boost factor, we set  $z \sim v_{halo}^2 \sim 10^{-6}$ 

$$\sigma v = \sigma_0 \frac{\delta^2 + \gamma^2}{(\delta + z)^2 + \gamma^2} \qquad B \sim \frac{\max[\delta, \gamma]^2}{\max[\delta + v_{halo}^2, \gamma]^2} \frac{\sqrt{x_{kd}}}{x_{f0}}$$

![](_page_19_Picture_0.jpeg)

![](_page_19_Picture_1.jpeg)

- If the kinetic decoupling occur at nearly the same epoch as chemical decoupling, the DM annihilation becomes more important and reduces the DM relic density
- It is difficult to achieve large boost factor to explain PAMELA/ATIC in the simplest model
  - The damping mass of subhalo maybe smaller than usual WIMP model due to high kinetic decoupling temperature. Need more detailed studies

 $M_d \sim 10^{-6} M_{\odot} (m/100 GeV)^{-3/2} (T_{kd} / 30 MeV)^{-3/2}$ 

Some complicated models could still work. For example, there exist a s-channel resonance to enhance Xf->xf scattering, the kinetic decoupling temperature may be as low as no effect on reducing DM relic density

![](_page_20_Picture_0.jpeg)