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Introduction

eak lensing effects

Weak distortions/magnifications
caused by large-scale structures of

the universe: common but weak

powerful probe for the large-scale
distribution of dark matter

sensitive to the formation of
large-scale structures and the
global geometry of the universe
- highly promising in dark energy
studies

Path of light

‘& around dark matter




Map out the mass distribution of the universe
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Cosmological constraints from cosmic shear analyses

et al. 2008 ARA (CFHTLS)
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Fig. 4. Two-point statistics from the combined 57 pointings. The errc
bars of the E-mode include statistical noise added in quadrature to th
non-Gaussian cosmic variance. Only statistical uncertainty contribute
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FIG. 1: Two dimensional constraints on og and €2, from
the ewrrent observations in ACDM model, assuming a flat
universe. The black solid lines are from data sets CMB +
LSS + SN Ia and red dashed lines are obtained by taking into
account the weak lensing data.

Li, H. et al. 2009 (RCS, VIRMOS,GaBoDS,CFHTLS(22)
total ~100deg*deg, varying depth)
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FIG. 2: one dimensional probability distribution of the total
neutrino mass Ym, from the current observations assuming
a flat universe. The black solid line is from data sets CMB
+ LSS + SN Ia, red dashed line is obtained by taking into
account the weak lensing data and the blue dash-dotted line
is for the dynamieal dark energy model.

Current WL observations start to provide
useful complementary information
in constraining cosmological parameters



Current status

SDSS - large sky coverage, but very shallow n, ~larc min~>
CFHTLS — wide 172 deg?, n, ~10 arcmin™
deep 4 deg?, n, ~ 30 arcmin™

Subaru WL survey -- ~23 deg?,  n, ~15-50 arcmin™

COSMOS (HST) -- ~2 deg?, n, ~ 70 arc min™

PanSTARRS, DES, HSC, LSST, Euclid, WFIRST, KDUST, ...
e.g., LSST: ~ wide-deep 18000 deg?, ", ~ 40 arcmin™

Statistical power will increase enormously!



Current status

SDSS — 1, ~ 1l arcmin™
CFHTLS
Subaru &° min~
COSMO
PanSTARF . e | P
eg, LSST: R ’

0

Statistical power will increase enormously!
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¢ Galaxy-Galaxy lensing

Analyze weak lensing effects of background
Munshi et al. 2008 . .
galaxies around foreground galaxies

The signals around individual galaxies are very weak
® - stacking is needed to enhance S/N

e - statistically probe the mass distribution around
foreground galaxies -- the galaxy-mass correlation

S(R) =7 [ [1+&m (VET+2)] dx

02 DS
AX(R) = 7(R)Z. = I(< R) — £(R) Xc = 1xG Di.Dis




Munshi et al. 2008

galaxy scale: stack signals - galaxy-galaxy lensing
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Fio. 5.—Angul iation of image polarization for foreground gal-
axies with 20 < r, <23 and background galaxies with 23 <r, <24. (a)
Variation of {p) with increasing annulus outer radius, 8,_,,. (b) Variation
of {p} with diff jal | paration, 8. Th ical esti of
<p) (6) for fiducial I* galaxy gravitational lenses (see § 3) with different
scaling radii, s*, are also shown.

Brainerd et al. 1996, 5m Hale, Palomar

0-02 IIIIIIIIIIIIIIIIIIITI]_
0.015

0.01

(7))

0.005

lllllllllllllllllklll]l

_TTIIII!ITI"ITYTTTTIFI]I]I

-0.000 o 1o ol b ool aa eyl

20 40 60 80 100 120
@(arcsec)

Figure 1. The average tangential alignment (y,) of source galaxies with
respect to the lens sample as a function of angular separation on the sky 6.
The solid curve shows the theoretical lensing signal from an NFW halo at
z = 0.65, the median redshift of the lens sample, with the maximum likeli-
hood method constrained virial radius r 5, = 204~ kpc.

Heymans et al. 2006, HST GEMS
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Divide foreground galaxies into different subsamples

according to their properties: e.g., luminosity, color, etc.

-> stacked signals from different subsamples
reveal the corresponding mass distributions

' Lensing signal for bright LRG sample AT averaged over source sample
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E luminosity. For L1 and L2, which have signal statistically consistent with
102 zero, the vertical scale is not logarithmic, and the zero level is shown as a

dashed line: for the other luminosity bins, a logarithmic scale is used for
AX. The error bars shown are statistical only: the lines are the results of
halo model fits as described in the text.
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onfronted with dark matter halo models and cosmologies
Li et al. 2009, MNRAS)

Analyses are done with the information of galaxy group catalogs
from SDSS (Yang, X. H. et al. 2007)

With the group catalog, we can separate central galaxies and

satellite galaxies. The group catalog also provides a matched host

dark matter halo mass to each group. Furthermore, we have the positions
of the satellite galaxies and the mass of the associated subhalos can also
be assigned according to certain ranking mechanism.

We then can model the g-g lensing signals taking into account different
contributions from central and satellite galaxies without the need of using
halo models, and further confront g-g lensing observations with
cosmological models



The cosmological model from WMAP3 together with the

NFW density profile for dark matter halos can give rise to

g-g lensing signals that are in good agreements with SDSS
observations. The model from WMAP1 (higher o g) over-predicts
the signals.

Li, R. et al. 2009, SDSS
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¢ Probing subhalo mass distribution with future observations
(Li et al. 2011)

Analyze the g-g lensing around satellite galaxies at a certain
distance to the group center
(and a certain luminosity / stellar mass range)
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Table 1. show the mean value of parameters of the input galaxy
sample, and the boundary of the flat prior we adopted in MCMC
fitting. M and M, are in unit of h—lM@, Rgisand 7y o1 are in
unit of h—! Mpe, Po,sub is in unit of 10'8h2 Mo Mpe—3.

MCMC analyses
LEV1: SDSS

lg M c Rais lg Mgub P0,sub T's,sub
mean input 14.1487 6.9 0.549 p § [ay d 1.0 0.015
high bound 14.5 10 0.9 12.5 10 0.03
low bound 13.5 3 0.3 10.5 0.1 0.005
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Tigure 6. In this figure, we compares the parameter constrain under different noise level. The solid histograms show the marginalized

wobability distribution of M, ¢, My, a5d Fpu, for LEV2 case, while the dashed histograms for LEV1 case.
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Current g-g lensing from SDSS cannot have any meaningful
constraints on subhalo properties (e.9., Mgp/ Mg sup, @)

LSST will have the potential to provide much tighter
constraints on these quantities



* We are investigating different systematics.

satellite contamination
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Figure 1. The histogram shows the halo mass distriubtion of
fake memebers which are assigned groups in mass bin of [10*,2x
10Mh— M.
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Figure 2. The figure shows the lensing signal from true satellites
(solid) and that from fake members. The galaxies are selected to
be in halo of [10'%,2 x 10"]h~ "M and halo-centric radius of
[0.5,0.6)h~* Mpe. We show the standard deviation of fake mem-
bers contamination with errorbar.
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Figure 3. In Fig.3, we show the constraints on host halo mass
and subhalo mass. The blue contours show the result by using
the mixed signal. The red contours show the constraints from
true signal which is calculated using only true satellites. And the
green contours show the constraints from corrected signal. The
black solid lines shows the value of input satellite mass.



* The analyses still use SDSS group catalog.
LSST will generate their own group catalog
based on photo-z. Applying the g-g subhalo

analyses to groups at different redshifts, we
can potentially probe the time-dependence of
the subhalo properties. On the other hand,
groups identified based on photo-z can have
larger contamination fraction, and their
effects need to be carefully studied.



- Weak-lensing peak statistics

Weak lensing observations can give rise to large-scale

projected mass distribution, allowing for blind detection of
clusters of galaxies. The peak abundance

carries important cosmological information.

M. White et al. 2002 i W col S s Forat
indicates hi 1Ittman et al. ef:‘ e
T. Hamana et al. 2004 i & Gavazzi & Soucail 2006

Tang & Fan 2005 Deep Lens Survey CFHTLS Deep



aks in the projected mass map {—?"'") 3-d mass concentrations
(clusters of galaxies)

projection effect along the line of sight (correlated/uncorrelated)

—

@rinsic ellipticities of source gaIaxieD

generate false peaks

(with respect to the peaks from true halos)
affect the peak height

and position of the true peaks




(Fan et al. 2010) In the weak lensing regime,

@ @IC elllp@
S)

observed elllpt|C|ty (O) =~y + g( =1, 2

K, (K)= Caé‘éo) =Kk(k)+ cae(s) c, =[cos2@,sin2¢] Kk = k[cos@,sin @]

a 2 a

Smoothed shear and convergence
Ng
=20)=T,(0)+=(0)=T,(0)+ 1 2 W(O-0)el@0.), a=12
n, <
K (0) = K(0)+ N(0) = [dk exp(-ik * 0)c, (K)Z,” (k)

** Note for the peak statistics,

Npeak(KN) = Npeak(K) +Npeak(N)



Peak statistics near halo regions

Known halo prorile

X

I\'N(J) =Kl (5') + N( J)——» Gaussian noise field

** The number density of noise peaks is strongly
enhanced in the halo region - depends on the
density profile of the halo = noise peaks carry
cosmological information



= Both the position and the height of the halo peak

are affected by noise R
P(AR)dAR ~ —-
[fo “dAR(27AR) [ npeak(AR, v)dv]

AR exp{—[K"(0)AR/a]?}
foﬁ“ dAR ARexp{—[K''(0)AR/a1]*}]

Halo peak position p(AR)AAR ~ dAR
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Fig. 8.— The spatial offset distribution of the measured main-cluster-peak position tc ...

true center of the cluster. The solid and dash-dotted lines ar -
Eq. (34) for the isothermal cluster and the .\:F'\\' cluster, The more Centra"y concentrated the prOﬁIe Is,
plus symbols are for the corresponding results from Monte the smaller the offset AR is.

parameters are the same as those in Figure 2.



Halo peak height o) = Npeak (V)
[[ "peak(V')dV']
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Statistical peak abundances over a large field
Halo region + field region

Npeak(V)dV = N3, 0 (v)dv + -n.;eak(y)d;/ e () = / d:(ﬂ__.-'(ii‘)

/d_-\[ n(M, 2)f (v, M, 2

-

R-vir‘
f(v,M,2) = / dR (27 R) npeak(v, M, 2)
0

1 | V() [
; _m{”.,,ﬂ,,(u) [.«zsz- / d== / dM n(M, ) (‘;TRN-,_)]}

Halo region:

** Halo peak is affected by noise

** Number of noise peaks is
enhanced by the halo mass
distribution




Comparison with simulations
(http://mwhite. berkeley.edu/Lensing)
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Shan et al. 2011, mass distribution from CFHTLS 72 deg?

peak statistics
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Statistical peak abundances

Develope a HOD-like model to calculate the total peak abundances:
halo mass function, halo density profile

halo peak height change, noise peak enhancement

We can then use the total number of peaks in convergence maps (true +
false) for cosmological studies without the need to differentiate true and
false peaks

Considering only true peaks, our model can correctly calculate the
the shift and the scatter of the peak height due to noise. Without
such analyses, we expect large biases on cosmological parameters
inferred from observed weak-lensing cluster abundances.



LSST will be able to detect much more peaks, and thus
is expected to provide important cosmological constraints
compliment to two-point correlation analyses of cosmic shear.

Systematic effects must be thoroughly investigated

** Projection effects of large-scale structures
I\}\r = Ikr -+ ]\fLSS -+ A\v

K ss: in linear regime --> Gaussian random field,
then our model can be readily extended to include
the projection effects

However: non-linear K s , correlation between K and K|
(e.g., Yan and Fan 2011: filaments statistics)
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«x Effects of masks on the peak statistics

Right ascension

Shan et al. 2011, CFHTLS

LSST will be able to probe small-scale structures.
Masks can have more significant effects on peak
statistics than those for CFHTLS analyses



galactic scale — galaxy-galaxy lensing
cluster scale — individual studies, statistical analyses
large-scale structures — cosmic shear
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