Inelastic Dark Matter in SUSY Inverse Seesaw

Yi Cai @ Beijing

arXiv: hep-ph/1110.1366

H. An, P. S. Bhupal Dev, Y. C. and R. N. Mohapatra

SKLTP

Contents

2/17

Introduction	3
Inelastic Dark Matter	8
The Model	10
Conclusion	17

Introduction

• Known:

- Existence: cosmological observations
 - ► Galactic rotation curvers
 - ► Gravitational lensing
 - **...**
- Amount: $\Omega h^2 = 0.11$

• Unknown:

- Mass
- Spieces
- Interaction properties

It's really hiding from us.

Our efforts: Route 1

Experimentalists: multiple directions

- Collider: LHC
- Indirect detection: PAMELA, ATIC, WMAP...
- Direct detection: DAMA, CRESST, XENON...

Results from direct detection

Somehow controversial

Our efforts: Route 2

Theorists:

- Darkon: SM+ a real gauge singlet
- Extra dimension: the lightest KK particle
- . . .
- Minimal Supersymmetric Standard Model:

neutralino, gravitino, etc

Go beyond the MSSM:

- If dark matter mass is in the few GeV range, MSSM may need to be extended, due to its inability to reproduce the observed DM relic density.
- The same extension may explain small neutrino masses.

One more ingredient

We want to believe DAMA.

Fit count rate with $S_0 + A \cos \omega (t - t_0)$

	$A \; (\mathrm{cpd/kg/keV})$	$T = \frac{2\pi}{\omega} \text{ (yr)}$	t_0 (day)	C.L.
DAMA/NaI				
(2-4) keV	0.0252 ± 0.0050	1.01 ± 0.02	125 ± 30	5.0σ
(2-5) keV	0.0215 ± 0.0039	1.01 ± 0.02	140 ± 30	5.5σ
(2–6) keV	0.0200 ± 0.0032	1.00 ± 0.01	140 ± 22	6.3σ
DAMA/LIBRA				
(2-4) keV	0.0213 ± 0.0032	0.997 ± 0.002	139 ± 10	6.7σ
(2–5) keV	0.0165 ± 0.0024	0.998 ± 0.002	143 ± 9	6.9σ
(2-6) keV	0.0107 ± 0.0019	0.998 ± 0.003	144 ± 11	5.6σ
DAMA/NaI+ DAMA/LIBRA				
(2–4) keV	0.0223 ± 0.0027	0.996 ± 0.002	138 ± 7	8.3σ
(2-5) keV	0.0178 ± 0.0020	0.998 ± 0.002	145 ± 7	8.9σ
(2–6) keV	0.0131 ± 0.0016	0.998 ± 0.003	144 ± 8	8.2σ

Inelastic Dark Matter

Tucker-Smith, Weiner hep-ph/0101138, hep-ph/0402065

- Besides χ_1 , add an additional particle χ_2 with a slightly heavier mass $M + \delta$.
- To excite the dark matter particle χ_1 to χ_2 ,

$$\chi_1 + N \rightarrow \chi_2 + N$$

lower velocity is kinematically unaccessible,

$$v_{min} = \frac{1}{\sqrt{2m_N E_R}} \left(\frac{m_N E_R}{\mu} + \delta \right)$$

and the differential rate is

$$\frac{dR}{dE_R} \sim \int_{v_{min}}^{v_{esc}} d^3v \frac{d\sigma}{dE_R} e^{-\frac{v^2}{v_0^2}}$$

In order to realize this mechanism, take a detour to neutrino physics.

Inverse Seesaw

Matter content: adds two SM singlet fermions N and S Mass matrix of the (ν, N, S) fields:

$$\mathcal{M}_{ ext{inv}} = \left(egin{array}{ccc} 0 & M_D^T & 0 \ M_D & 0 & M_R \ 0 & M_R^T & \mu_S/2 \end{array}
ight)$$

This leads to the neutrino mass formula

$$M_{\nu} = M_D M_R^{-1} \mu_S \left(M_D M_R^{-1} \right)^T$$

$$M_R \sim \text{TeV} \rightarrow \mu_S \sim \text{keV}$$

Dark matter: the lightest supersymmetric particle

- Neutralino?
- Stau?
- A linear combination of the $\{\tilde{\nu}, \tilde{N}, \tilde{S}\}$?

With μ_S , a mass splitting δ appears, which could be the right size.

The mass matrix arises in the MSSM from the following superpotential:

$$W_1 = W_{\text{MSSM}} + Y_{\nu}NH_uL + M_RNS + \frac{1}{2}S\mu_SS$$

 LH_uS and NN are both lepton number violating \rightarrow sizes $\sim \mu_S$

structure of inverse seesaw not spoiled

Or extend the gauge group to $SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

$$\mathcal{W}_2 = \mathcal{W}_{\text{MSSM}} + Y_L L \Phi L^c + Y_S S \phi_R L^c + \frac{1}{2} S \mu_S S$$

- Φ is a bi-doublet with B-L charge zero
- ϕ_R is $SU(2)_R$ doublet with a B-L charge 1.
- LH_uS and NN are forbidden by $SU(2)_R$.

Multiplet	$SU(3)_c$	$SU(2)_L$	$SU(2)_R$	$U(1)_{B-L}$
\overline{Q}	3	2	1	+1/3
Q^c	3	1	2	-1/3
\dot{L}	1	2	1	-1
L^c	1	1	2	+1
χ_p	1	2	1	+1
χ_q^c	1	1	2	-1
$\overline{\chi}_p^{'}$	1	2	1	-1
$rac{\chi_p}{\chi_q^c} \Phi_a$	1	1	2	+1
Φ_a	1	2	2	0
S^{lpha}	1	1	1	0
δ	3	1	1	+4/3
$\overline{\delta}$	3	1	1	-4/3

- Quarks and leptons: 16_F
- Φ: 10_H
- χ s: 16_H
- $\delta s_{Y} 45_{H}$, ensure gauge coupling unification

• Neglect the keV scale lepton number violation effect

$$\tilde{\chi}_1 = \sum_{i=1}^{3} (U^{\dagger})_{1\nu_i} \tilde{\nu}_i + (U^{\dagger})_{1N_i} \tilde{N}_i^{\dagger} + (U^{\dagger})_{1S_i} \tilde{S}_i$$

• Turn on the lepton number violation, the splitting terms

$$\sum_{m,n=1}^{9} A_{mn} \tilde{\chi}_m \tilde{\chi}_n$$

The mass splitting of the LSP can be written as

$$\delta M_{\chi} = 4|A_{11}|/M_{\chi}$$

where generically $A_{11} \sim \mu_S M_{SUSY}$

Relic Abundance

Dark matter candidate: a linear combination of the $(\tilde{\nu}, \tilde{N}^{\dagger}, \tilde{S})$ fields

- The second and third channels are the new contribution in SUSYLR.
- The annihilation cross section for the Z' channel is suppressed compared to the Z-channel by a factor $(c_1/c_0)^2(M_Z/M_{Z'})^4$, where $c_{(0,1)} = \sum_{i=1}^3 |U_{(\nu,N)_{i1}}|^2$.
- Numerically, we find that the DM relic density constraint restricts c_0 to be less than 16% which also agrees with the invisible Z-decay width constraint.
- For dark matter mass up to 100 GeV, we found enough parameter space with right relic abundance.

Direct Detection

DM is a real scalar field accompanied by its slightly heavier partner field

Both elastic and inelastic

- Direct detection channel mediated by SM-like Higgs, $\lambda h_0 \tilde{\chi}_1^{\dagger} \tilde{\chi}_1$ With lepton number violation, $\frac{\lambda}{2} h_0 (\chi_1^2 + \chi_2^2)$ is elastic
- Direct detection channel mediated by gauge bosons,

$$\frac{i}{2\cos\theta_W} \left(c_0 g_{2L} Z^{\mu} + c_1 \frac{\cos^2\theta_W}{\sqrt{\cos 2\theta_W}} g_{2R} Z'^{\mu} \right) \times \left(\tilde{\chi}_1 \partial_{\mu} \tilde{\chi}_1^{\dagger} - \tilde{\chi}_1^{\dagger} \partial_{\mu} \tilde{\chi}_1 \right)$$

With lepton number violation, $iZ^{\mu}(\chi_1\partial_{\mu}\chi_2-\chi_2\partial_{\mu}\chi_1)$, thus is inelastic

- For large fractions of the left snuetrino component $(c_0 > 10^{-3})$, inelastic
 - -Z'-exchange channel suppressed by its large mass
 - The elastic channel mediated by Higgs is suppressed by light quark masses.
- For small fractions of the left neutrino component $(c_0 < 10^{-4})$ and large (c_1) , (z_0) channel could be comparable

- small c_0 and large c_1 , blue and orange: elastic dominated(thin) for low mass DM and inelastic Z' exchange (thick) for higher DM mass
- small or zero c_1 , pink and green curves, always dominated by inelastic channel mediated by Z

Red and blue: $(c_0, c_1) = (0.001, 0.1)$ and (0.1, 0.001)Solid and dashed: $(M_{\chi}, \delta) = (10 GeV, 20 keV)$ and (50 GeV, 60 keV)

- We have shown that the supersymmetric inverse seesaw model for neutrinos naturally leads to an inelastic scalar dark matter.
- The differential scattering rate and annual modulation predicted in these models might be tested in future direct detection experiments.
- At colliders, the signatures are four(two) jets + like(opposite)-sign dilepton signals with missing energy if the gluino is lighter(heavier) than the squarks.
- The collider phenomenology will be explored in detail.

