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¤  Preamble  

¤  CP asymmetry in D decays 

¤  LR Mixing  on D0à(K+ K−, π+π− ) 

¤  Summary 



Observed CP Asymmetries 

¤  The first event : 1964, indire CP is observed in K-meson, 
ε~2.2*10-3.  

¤  nonzero DCP in K-meson,    ε’/ε~1.7*10-3 

¤  indirect CP observed in BàJ/ψKS, sin2βd =0.671+/- 0.023 

¤  DCP in BàKπwas observed 

Data : ACP(B- àBàπ+ K-) –ACP(Bàπ0 K-)=−(14.8+1.3
-1.4 )% 



Kobayashi-Maskawa (KM) phase 
¤  In the SM, the CP is arisen from the charged weak current, 
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2 11. CKM quark-mixing matrix

Figure 11.1: Sketch of the unitarity triangle.

The CKM matrix elements are fundamental parameters of the SM, so their precise
determination is important. The unitarity of the CKM matrix imposes

∑
i VijV

∗
ik = δjk

and
∑

j VijV
∗
kj = δik. The six vanishing combinations can be represented as triangles in

a complex plane, of which the ones obtained by taking scalar products of neighboring
rows or columns are nearly degenerate. The areas of all triangles are the same, half of
the Jarlskog invariant, J [7], which is a phase-convention-independent measure of CP
violation, defined by Im

[
VijVklV

∗
il V

∗
kj

]
= J

∑
m,n εikmεjln.

The most commonly used unitarity triangle arises from

Vud V ∗
ub + Vcd V ∗

cb + Vtd V ∗
tb = 0 , (11.6)

by dividing each side by the best-known one, VcdV
∗
cb (see Fig. 1). Its vertices are exactly

(0, 0), (1, 0), and, due to the definition in Eq. (11.4), (ρ̄, η̄). An important goal of
flavor physics is to overconstrain the CKM elements, and many measurements can be
conveniently displayed and compared in the ρ̄, η̄ plane.

Processes dominated by loop contributions in the SM are sensitive to new physics, and
can be used to extract CKM elements only if the SM is assumed. In Sec. 11.2 and 11.3,
we describe such measurements assuming the SM, we give the global fit results for the
CKM elements in Sec. 11.4, and discuss implications for new physics in Sec. 11.5.

11.2. Magnitudes of CKM elements

11.2.1. |Vud| :
The most precise determination of |Vud| comes from the study of superallowed 0+ → 0+

nuclear beta decays, which are pure vector transitions. Taking the average of the twenty
most precise determinations [8] yields

|Vud| = 0.97425± 0.00022. (11.7)
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¤  In the SM, the mixing induced CP asymmetry 

(MICPA) is large in Bd decays 

¤  The MICPAs in Bs and D mesons are small. The good 
places to probe the new CP mechanism 



Why should we care the new CP 
phase? 
¤  Faith, no reason to believe that there exists only one phase 

in nature 

¤  KM phase can not explain the matter-antimatter 
asymmetry 

¤  Motivated by current data : for instance,  

v  the πK puzzle 

Native estimation: ACP(B- àπ0 K-) ≈ ACP(Bàπ+ K-) 

Data : ACP(B- àBàπ+ K-) –ACP(Bàπ0 K-)=−(14.8+1.3
-1.4 )% 



!!" ≈ !−0.041!!!!!! !
!!! = 2 !!"! !"#!!,!! ≈ −2!!!

φs =[ −1.17 ; −0.56 ]  
       ∪ [ −2.60 ; −2.01 ] 

ΔΓs=[ +0.084 ; +0.224 ]  
      ∪ [ −0.230 ; −0.119 ] ps−1 

v  CDF+D0: a large phase in Bs oscillation (BsàJ/φ) 



v  D0 observed the like-sign charge asymmetry in dimuon 
events, defined by 

Data & SM prediction 

!!!! = (−0.787± !0.172± 0.093!)×10!!!

!!!! (!") = (−0.23!!.!!!!.!!)×10!!!

D0 Co, PRD82(10) 

Lenz & Nierste, 
JHEP0706(07) 

!!ℓ! = !!!! − !!!!
!!!! + !!!!

!

PRD84(11) 

!!!(!!):!The!number!of!!events!that!b!and!
!1hadron!semi1leptonically!decay!into!two!
positive(negative)!muons!



¤  Two neutral strong 
eigenstates D, D-bar, with 
weak interactions the 
corresponding Hamiltonian is 
given by 

 

¤   The mass eigenstates: 

Time-dependent CPA  

¤  The time evolution of flavor 
states: 

¤  The relationship among p, q, 
M,Γin B-meson: 
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CP Violation in D decays 

¤  Final states are CP eigenstate 

¤  Time-integrated CP asymmetry, defined by 

!!" ! = ! !! → ! − !(!! → !)
! !! → ! + !(!! → !)!!

= !!"!"# ! + !< ! >
! !!"!"#!



The measurement of LHCb 

!!"# ! = ! !∗! → !! ! !!! − !(!∗! → !! ! !!!)
! !∗! → !! ! !!! + !(!∗! → !! ! !!!)

!!
!!= !!" ! + !! ! + !! !!! + !!(!∗!)!

AD(f): detection asymmetry of D0 
AD(π+

s): detection asymmetry of soft pion 
AP(D*+) : production asymmetry for D*+ 



¤ AD(K+K- )=AD(π+π− )=0 

¤ AD(π+
s) and AP(D*+) are similar in KK and 

ππ, i.e. 

ΔACP = Araw(K+K- ) − Araw(π+π− ) 

         ≈ ACP(K+K- ) − ACP(π+π− ) 

¤  robust  against systematics  



¤  The CP difference 

¤  LHCb result:  arXiv:1112.0938 

!!!" = !!"!"# !! − !!"!"#(!!)+ !
! !
! !!"!"#!

! !
! = (9.83± 0.22± 0.19)%!
!!!" ≈ !!"!"# !! − !!"!"#(!!)!

!!!" = (−0.82± 0.21± 0.11)%!

!!!" = (−0.62± 0.21± 0.10)%!(CDF!note!10784)!



!!"!"#(!!) = (−0.24± 0.22± 0.09)%!
!!"!"#(!!) = (0.22± 0.24± 0.11)%!
!

¤  CDF results: arXiv: 1111.5023 



Naïve estimation in the SM 
¤  Direct CP asymmetry in Dà(KK, ππ) 

 

q=d àππmode, q=s à KK mode 

¤  Eq
SM stands for the W-exchange and long-distance effects are 

dominated 

¤  With Tq
SM ~ Eq

SM and Im(V*
cbVub/V*

cqVuq)=±A2λ4η 

¤  Unless Pq
SM/Tq

SM >1, the large magnitude of ΔACP may imply the 
existence of new physics and new CP phase 

!"# = !!
2 !!"∗ !!" !!"! + !!"! !!!!! − !!"∗ !!"!!"! !!!!

! !

!!"!"# !!!! ∼ −!!"!"# !!!! ∼ −0.05!!"
!

!!"!
%!

Clearly, the LHCb data in Eq. (1) is dominated by the difference of the direct CP asymme-

tries, ∆Adir
CP .

Before introducing the new physics, we first estimate the results in the SM. In order to

have a nonzero direct CPA, two amplitudes A1 and A2 with both nontrivial weak phase

difference θW and strong phase difference δS are necessary, leading to

ACP (D
0 → f) =

−2|A1||A2| sin θW sin δS
|A1|2 + |A2|2 + 2|A1||A2| cos θW cos δS

. (7)

The SM description of the direct CPA for D0 → f arises from the interference between tree

and penguin contributions, in which decay amplitudes take the generic expressions

Aq
SM(D0 → f) = V ∗

cqVuq

(

T q
SM + Eq

SMeiδ
q
S

)

+ V ∗

cbVubP
q
SMe

iφq
S , (8)

where q = (d, s) represents f = (π+π−, K+K−) respectively, Vq′q is the CKM matrix ele-

ment, T ′
SM(P ′

SM) denotes the tree (penguin) contribution in the SM, E ′
SM stands for the

contributions of W-exchange topology and δqS(φ
q
S) is the associated CP-even phase. Besides

the hierarchy in the CKM matrix elements V ∗
cqVuq # V ∗

cbVub, penguin amplitudes usually are

also suppressed by loop factors. it could be estimated by

Adir
CP (D

0 → f) ∼ −Im

(

V ∗
cbVub

V ∗
cqVuq

)

2P q
SM

|T q
SM + Eq

SMeiδ
q
S |2

(T q
SM sinφq

S + Eq
SM sin(δqS − φq

S)) ,(9)

With Im(V ∗
cbVub/V ∗

cqVuq) ≈ ±A2λ4η, Eq
SM ∼ T q

SM , and sinφq
S ∼ sin(δqS − φq

S) ∼ O(1), we

could have

ACP (K
−K+) ∼ −ACP (π

−π+) ∼ A2λ4η
P q
SM

T q
SM

. (10)

Unless by some unknown QCD effects P q
SM could be enhanced to be few factors larger than

T q
SM , normally the predicted ∆ACP in the SM is far below the central value in Eq. (4). The

detailed analysis by various approaches in the SM could be referred to Refs. [12, 17–19]. As

a result, if we took the data by the LHCb and CDF seriously, a solution to the large ∆ACP

would be to introduce some new CP violating mechanism beyond the CKM.

Recently, a number of theoretical studies [4–21] have been performed to understand the

LHCb and CDF data. Since the mixing induced CPA in D-meson now is limited to be less

than around 0.3% and no significant evidence shown a non-vanished CPA is found, if a large

∆ACP indicates some new physics effects, the same mechanism contributing to Aind
CP should

be small or negligible. For satisfying the criterion of small Aind
CP , it is interesting to study

3



¤  The detailed analysis with various approaches in the SM 
could be referred to  

     Cheng & Chiang, 1201.0785, 1205.0580 

     Feldmann, Nandi and Soni, 1202.3795  

     Li, Lu, Yu, 1203.3120 

     Franco, Mishima, Silvestrini,1203.3131 

     Brod, Grossman, Kagan, Zupan, 1203.6659 

 

       



LR Mixing in general SU(2)LxSU(2)RxU(1) 
Chen, Geng, Wang  

¤  Motivation: aind
CP usually induced by box diagrams is still 

consistent with no CP violation, for avoiding the constraint, 
we investigate the ΔACP is generated by tree, the same 
effects are suppressed at loop 

¤  The extension of SM based on the gauge symmetry 
SU(2)L×SU(2)R×U(1)B-L 

¤  Two charged gauge bosons, WL, WR,  

¤  Fermion masses are from  

¤  Break SU(2)L,R, one can introduce doublets δL,R and triplets 
ΔL,R 

Φ = !!! !!!
!!! !!!

= (2,2∗ , 0)!



¤  The mass matrix for WL-WR is 

¤  Mass eigenstates vs gauge eigenstates 

!! = !!
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! !
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2 !!
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¤  LR mixing effects on D decays 

 

¤  Pure WR contributions are g2
R /m2

R suppressed, hereafter 
we don’t discuss the effects. 

c

q

WL(WR)

WR(WL) q

u

 q=d, s 



¤  If MR~ 1TeV, MLR~0.1 TeV, ξ~O(10-2), if no further constraint, 
it is large enough to enhance the CP in D decays 

¤  In manifest or pseudo-manifest LR model,VL=VR(*), 
ξ<O(10-3) Wolfenstein PRD(84) 

¤  The constraint could be released when  flavor mixing 
effects are more arbitrary and  carry large CP phases 
(nonmanifest LR model) Langacker & Sankar PRD(89) 

¤  Sizable ξ and large phase in VR  could lead to large CP in 
Hyperon decays, Chang, He, Pakavasa PRL(95) 

¤  We study the impact on the CP in D0à ππ, KK decays 



Decay Amplitudes 

the tree induced new CP violating effects in which the loop contributions are automatically

suppressed. Therefore, in this paper, we would like to explore the new CP source which

is associated with right-handed charged currents and left-right (LR) mixing angle, ξ, in

general SU(2)L × SU(2)R ×U(1) model [22, 23]. It is known that unitarity of CKM matrix

could give a strict limit on the ξ [24], however it was found that the allowed value of mixing

angle indeed could be as large as of order of 10−2 when the right-handed mixing matrix has

different pattern from the CKM and carries large CP phases [23]. Based on the possible

large new CP phases and sizable ξ, we study the impact on the direct CPAs in D0 → f

decays.

In terms of the notations in Ref. [23], we first write the mass eigenstates of charged gauge

bosons as




W±

L

W±

R



 =





cos ξ − sin ξ

eiω sin ξ eiω cos ξ









W±

1

W±

2



 . (11)

The phase ω is arisen from the complex vacuum expectation values (VEVs) of bidoublet

scalars which are introduced to generate the masses of fermions. Since mW $ mWR
, it is

more useful to take the approximation of cos ξ ≈ 1 and sin ξ ≈ ξ . Accordingly, the charged

current interactions in flavor space could be expressed by

−LCC =
1√
2
Ūγµ

(

gLV
LPL + gRξV̄

RPR

)

DW+
1

+
1√
2
Ūγµ

(

−gLξV
LPL + gRV̄

RPR

)

DW+
2 + h.c. (12)

where the flavor indices are suppressed, V L is the Cabibbo-Kobayashi-Maskawa (CKM)

matrix, V̄ R = eiωV R and V R is the flavor mixing matrix for right-handed currents. Conse-

quently, the four-Femi interactions for c → uqq̄ induced by LR mixing are given by

Hq
χχ′ =

4GF√
2

gR
gL

ξ
[

V χ′

uq V
χ∗

cq (C ′

1(µ)(ūq)χ′(q̄c)χ) + C ′

2(µ)(ūαqβ)χ′(q̄βcα)χ)

+ V χ
uqV

χ′∗

cq (C ′

1(µ)(ūq)χ(q̄c)χ′) + C ′

2(µ)(ūαqβ)χ(q̄βcα)χ′)
]

. (13)

Here, χ = L(R) and χ′ = R(L) while q = s(d), and (q̄q′)L(R) = q̄γµPL(R)q′. The Wilson

coefficients C ′
1 = η+ and C ′

2 = (η+ − η−)/3 with QCD corrections could be estimated by

[25, 26]

η+ =

(

αs(µ)

αs(mc)

)−3/27 ( αs(µ)

αs(mb)

)−3/25 ( α(mb)

αs(mW )

)−3/23

,

η− = η−8
+ . (14)

4

the tree induced new CP violating effects in which the loop contributions are automatically

suppressed. Therefore, in this paper, we would like to explore the new CP source which

is associated with right-handed charged currents and left-right (LR) mixing angle, ξ, in

general SU(2)L × SU(2)R ×U(1) model [22, 23]. It is known that unitarity of CKM matrix

could give a strict limit on the ξ [24], however it was found that the allowed value of mixing

angle indeed could be as large as of order of 10−2 when the right-handed mixing matrix has

different pattern from the CKM and carries large CP phases [23]. Based on the possible

large new CP phases and sizable ξ, we study the impact on the direct CPAs in D0 → f

decays.

In terms of the notations in Ref. [23], we first write the mass eigenstates of charged gauge

bosons as




W±

L

W±

R



 =





cos ξ − sin ξ

eiω sin ξ eiω cos ξ









W±

1

W±

2



 . (11)

The phase ω is arisen from the complex vacuum expectation values (VEVs) of bidoublet

scalars which are introduced to generate the masses of fermions. Since mW $ mWR
, it is

more useful to take the approximation of cos ξ ≈ 1 and sin ξ ≈ ξ . Accordingly, the charged

current interactions in flavor space could be expressed by

−LCC =
1√
2
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Based on the decay constants and transition form factors, defined by

〈0|q̄′γµγ5q|P (p)〉 = ifPp
µ ,

〈P (p2)|q̄γµc|D(p1)〉 = FDP
+ (k2)

{

Qµ −
Q · k
k2

kµ
}

+
Q · k
k2

FDP
0 (k2) kµ , (15)

respectively, with Q = p1 + p2 and k = p1 − p2, the decay amplitude for D0 → f in QCD

factorization approach is found by

Aq
LR(D

0 → f) =
(

V L∗

cq V̄ R
uq − V̄ R∗

cq V L
uq

)

T q
χχ′ (16)

with

T d
RL =

GF√
2

gR
gL

ξa′1fπF
Dπ
0 (m2

D −m2
π) ,

T s
LR =

fK
fπ

FDK
0

FDπ
0

m2
D −m2

K

m2
D −m2

π

T d
RL ,

and a′1 = C ′
1 + C ′

2/Nc. The associated branching ratio could be obtained by B(D0 → f) =

τD| $pf |Aq(D0 → f)|2/8πmD, where τD is the lifetime of D0 meson, |pf | is the magnitude of

π(K) momentum and Aq = Aq
SM + Aq

LR. With V L
us ≈ −V L

cd ≈ λ, the squared amplitude

differences between D0 → f and its CP conjugate are

|Ad|2 − |Ād|2 = −4Ed
SMT d

RL sin δ
d
S

(

λ2ImV R∗

ud + λImV R
cd

)

,

|As|2 − |Ās|2 = −4Es
SMT s

LR sin δsS
(

λImV R∗

us − λ2ImV R
cs

)

. (17)

Clearly, the direct CPA in D0 → f decay will strongly depend on the CP violating phases

in V R
cq,uq.

In the numerical calculations, the taken input values of the SM are listed in Table I [12,

27, 28], where the resulting branching ratios (BRs) for D0 → (π−π+, K−K+) are estimated

as (1.38, 3.96)×10−3, while the current data are B(D0 → π−π+) = (1.400±0.026)×10−3 and

B(D0 → K−K+) = (3.96± 0.08)× 10−3 [28]. We note that the QCD related SM inputs are

extracted from the Cabibbo allowed decays, the influence of considering new effects on these

decays is small. Due to W-exchange topology dominated by the final state interactions, the

short-distance effects could be ignored. Since the CPAs involve V R
ud,us, we need to consider

the constraint from the direct CPA in K → ππ decays. Using the result in Ref. [31], we know

(ε′/ε)K ∼ 1.25×gR/gLξIm(V̄ R
us−λV̄ R∗

ud ). Therefore, for avoiding the constraint from (ε′/ε)K ,

5
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|As|2 − |Ās|2 = −4Es
SMT s

LR sin δsS
(

λImV R∗

us − λ2ImV R
cs

)

. (17)

Clearly, the direct CPA in D0 → f decay will strongly depend on the CP violating phases

in V R
cq,uq.

In the numerical calculations, the taken input values of the SM are listed in Table I [12,

27, 28], where the resulting branching ratios (BRs) for D0 → (π−π+, K−K+) are estimated

as (1.38, 3.96)×10−3, while the current data are B(D0 → π−π+) = (1.400±0.026)×10−3 and

B(D0 → K−K+) = (3.96± 0.08)× 10−3 [28]. We note that the QCD related SM inputs are

extracted from the Cabibbo allowed decays, the influence of considering new effects on these

decays is small. Due to W-exchange topology dominated by the final state interactions, the

short-distance effects could be ignored. Since the CPAs involve V R
ud,us, we need to consider

the constraint from the direct CPA in K → ππ decays. Using the result in Ref. [31], we know

(ε′/ε)K ∼ 1.25×gR/gLξIm(V̄ R
us−λV̄ R∗

ud ). Therefore, for avoiding the constraint from (ε′/ε)K ,

5

Based on the decay constants and transition form factors, defined by

〈0|q̄′γµγ5q|P (p)〉 = ifPp
µ ,

〈P (p2)|q̄γµc|D(p1)〉 = FDP
+ (k2)

{

Qµ −
Q · k
k2

kµ
}

+
Q · k
k2

FDP
0 (k2) kµ , (15)
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27, 28], where the resulting branching ratios (BRs) for D0 → (π−π+, K−K+) are estimated
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¤  CP asymmetries : 

¤   With VL
ud=-VL

us~-λ 

¤  The CPAs depend on the pattern of VR 

It is generally anticipated that both direct and indirect CP asymmetries (CPAs) in the

charm sector are quite small in the standard model (SM). Any observation of the large CPA

in D0 decays will presumably imply that the underlying theory is out of the scope of the

SM.

Recently based on the 0.62 fb−1 of data collected in 2011, the LHCb collaboration [1]

measured the difference between the time-integrated CPAs in the decays D0 → K+K− and

D0 → π+π−, ∆ACP ≡ ACP (D0 → K+K−)−ACP (D0 → π+π−), given by

∆ACP = (−0.82± 0.21(stat.)± 0.11(sys.))% , (1)

where the first uncertainty is statistical and the second is systematic. The quantity

ACP (D0 → f) is defined as

ACP (D
0 → f) ≡

Γ(D0 → f)− Γ(D̄0 → f)

Γ(D0 → f) + Γ(D̄0 → f)
, (2)

with f = K+K−, π+π−. Later, with the 9.7 fb−1 of integrated luminosity CDF measured

the CPA difference as [2]

∆ACP = (−0.62± 0.21± 0.10)% . (3)

Combing the results of LHCb and CDF by assuming fully uncorrelated uncertainties, the

average is obtained by [2]

∆Aavg
CP = (−0.67± 0.16)% (4)

and a 3.8σ deviation from no CP violation hypothesis is indicated. By contrast, earlier

results released by the CDF collaboration [3] based on 5.9 fb−1 of the integrated luminosity

are somewhat less conclusive, given by

ACP (D
0 → π+π−) = (+0.22± 0.24± 0.11)% ,

ACP (D
0 → K+K−) = (−0.24± 0.22± 0.09)% . (5)

It is known that time dependent CPA contains both direct (Adir
CP (D

0 → f)) and indirect

(Aind
CP (D

0 → f)) parts, and from the LHCb report [1] one has

∆ACP $ ∆Adir
CP + (9.8± 0.3)%Aind

CP , (6)

where ∆Adir
CP ≡ ACP (D0 → K+K−)− ACP (D0 → π+π−) and Aind

CP = Aind
CP (D

0 → f), which

is universal for f = K+K− and π+π− and less than 0.3% due to the mixing parameters.
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µ ,
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+ (k2)

{

Qµ −
Q · k
k2

kµ
}

+
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respectively, with Q = p1 + p2 and k = p1 − p2, the decay amplitude for D0 → f in QCD

factorization approach is found by
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2/Nc. The associated branching ratio could be obtained by B(D0 → f) =

τD| $pf |Aq(D0 → f)|2/8πmD, where τD is the lifetime of D0 meson, |pf | is the magnitude of

π(K) momentum and Aq = Aq
SM + Aq

LR. With V L
us ≈ −V L

cd ≈ λ, the squared amplitude

differences between D0 → f and its CP conjugate are
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(
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,
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. (17)

Clearly, the direct CPA in D0 → f decay will strongly depend on the CP violating phases

in V R
cq,uq.

In the numerical calculations, the taken input values of the SM are listed in Table I [12,

27, 28], where the resulting branching ratios (BRs) for D0 → (π−π+, K−K+) are estimated

as (1.38, 3.96)×10−3, while the current data are B(D0 → π−π+) = (1.400±0.026)×10−3 and

B(D0 → K−K+) = (3.96± 0.08)× 10−3 [28]. We note that the QCD related SM inputs are

extracted from the Cabibbo allowed decays, the influence of considering new effects on these

decays is small. Due to W-exchange topology dominated by the final state interactions, the

short-distance effects could be ignored. Since the CPAs involve V R
ud,us, we need to consider

the constraint from the direct CPA in K → ππ decays. Using the result in Ref. [31], we know

(ε′/ε)K ∼ 1.25×gR/gLξIm(V̄ R
us−λV̄ R∗

ud ). Therefore, for avoiding the constraint from (ε′/ε)K ,

5

V̄ R = ei!V R



Constraint from ε’/ε 
¤  The tree induced CP also contributes to direct CP 

violation in Kà ππ 

¤  To avoid the constraint from DCPV in K decays, we 
consider two cases: 
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respectively, with Q = p1 + p2 and k = p1 − p2, the decay amplitude for D0 → f in QCD

factorization approach is found by

Aq
LR(D

0 → f) =
(

V L∗

cq V̄ R
uq − V̄ R∗

cq V L
uq

)

T q
χχ′ (16)

with

T d
RL =

GF√
2

gR
gL

ξa′1fπF
Dπ
0 (m2

D −m2
π) ,

T s
LR =

fK
fπ

FDK
0

FDπ
0

m2
D −m2

K

m2
D −m2

π

T d
RL ,

and a′1 = C ′
1 + C ′
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τD| $pf |Aq(D0 → f)|2/8πmD, where τD is the lifetime of D0 meson, |pf | is the magnitude of
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LR sin δsS
(
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us − λ2ImV̄ R
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)

. (17)

Clearly, the direct CPA in D0 → f decay will strongly depend on the CP violating phases

in V R
cq,uq.

In the numerical calculations, the taken input values of the SM are listed in Table I [12,

27, 28], where the resulting branching ratios (BRs) for D0 → (π−π+, K−K+) are estimated

as (1.38, 3.96)×10−3, while the current data are B(D0 → π−π+) = (1.400±0.026)×10−3 and

B(D0 → K−K+) = (3.96± 0.08)× 10−3 [28]. We note that the QCD related SM inputs are

extracted from the Cabibbo allowed decays, the influence of considering new effects on these

decays is small. Due to W-exchange topology dominated by the final state interactions, the

short-distance effects could be ignored. Since the CPAs involve V R
ud,us, we need to consider

the constraint from the direct CPA in K → ππ decays. Using the result in Ref. [31], we

know (ε′/ε)K ∼ 1.25 × 10−3gR/gLξIm(V̄ R
us − λV̄ R∗

ud ). Therefore, for avoiding the constraint
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¤  The SM inputs : arXiv:1201.0785, Cheng & Chiang  

 

 

¤  The  BRs for Dà (KK, ππ) in the SM are 

B(D0 ! K�K+) = 4.0[3.94± 0.07]⇥ 10�3

B(D0 ! ⇡�⇡+) = 1.4[1.397± 0.026]⇥ 10�3

TABLE I. Numerical inputs for the parameters in the SM.

T d
SM T s

SM Ed
SM Es

SM δdS δsS

3.0× 10−6GeV 4.0× 10−6GeV 1.3× 10−6GeV 1.6× 10−6GeV 145◦ 108◦

V L
us mπ(K) mD fπ(K) F

Dπ(K)
0 mt

0.22 0.139(0.497)GeV 1.863GeV 0.13(0.16)GeV 0.666(0.739) 162.8 GeV

we adopt two cases: (a)Im(V R
us,ud) → 0 and (b) Im(V̄ R

us) ≈ λIm(V̄ R∗

ud ). We investigate the

two cases separately.

Case I: the Eq. (17) is simplified as

|Ad|2 − |Ād|2 = −4Ed
SMT d

RL sin δ
d
SλImV̄ R

cd ,

|As|2 − |Ās|2 = −4Es
SMT s

LR sin δsSλ
2ImV̄ R

cs . (18)

In general, V R
cd and V R

cs are free parameters. In order to illustrate the impact of LR mixing

effects on the ∆ACP and make the CPAs of π+π− and K+K− modes to be more correlated,

an interesting choice is V̄ R
cd ≈ −λeiθ and V̄ R

cs ≈ eiθ. Hence, the involving free parameters for

the CPAs are the CP phase θ and the mixing angle ξ. Using Eqs. (16) and Aq = Aq
SM +Aq

LR,

the Brs for D0 → (π+π−, K+K−) as a function of ξ and θ are shown in Fig. X(a). We see

that allowed region.. Since we have ACP (K+K−) = −ACP (π+π−) in the chosen parameters,

we just display the ∆ACP as a function of ξ and θ in Fig. X(b)....

Case II: the Eq. (17) becomes

|As|2 − |Ās|2 = 4λ2Es
SMT s

LR sin δsS
(

ImV̄ R∗

ud + ImV̄ R
cs

)

. (19)

Without further limiting the pattern of V R, apparently the situation in the case II is more

complicated. It was pointed out that one can have weak constraints on the mass of WR

when the right-handed flavor mixing matrix is centered around following two forms [23]:

V R
A (α) =











1 0 0

0 cα ±sα

0 sα ∓cα











, V R
B (α) =











0 1 0

cα 0 ±sα

sα 0 ∓cα











(20)

with cα = cosα and sα = sinα and α being an arbitrary angle. We note that the null

elements denote the values that are smaller than O(λ2), thus the effects could be ignored in

the analysis. We will focus on the implication of the two special forms. By using V R
A (α),

6



Results: Case I 
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Case II: 

¤  We get  

¤  We adopt the patterns for the numerical analysis 

!"!!!"! ≈ !"#!!!"!∗!

TABLE I. Numerical inputs for the parameters in the SM.
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ud ). We
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In general, V R
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cs are free parameters. In order to illustrate the impact of LR mixing

effects on the ∆ACP and make the CPAs of π+π− and K+K− modes to be more correlated,
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cd ≈ −λeiθ and V̄ R
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the CPAs are the CP phase θ and the mixing angle ξ. Using Eqs. (16) and Aq = Aq
SM +Aq

LR,

the Brs for D0 → (π+π−, K+K−) as a function of ξ and θ are shown in Fig. X(a). We see

that allowed region.. Since we have ACP (K+K−) = −ACP (π+π−) in the chosen parameters,

we just display the ∆ACP as a function of ξ and θ in Fig. X(b)....
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with cα = cosα and sα = sinα and α being an arbitrary angle. We note that the null

elements denote the values that are smaller than O(λ2), thus the effects could be ignored in

the analysis. We will focus on the implication of the two special forms. By using V R
A (α),
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Based on the decay constants and transition form factors, defined by

〈0|q̄′γµγ5q|P (p)〉 = ifPp
µ ,
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}

+
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respectively, with Q = p1 + p2 and k = p1 − p2, the decay amplitude for D0 → f in QCD

factorization approach is found by
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2/Nc. The associated branching ratio could be obtained by B(D0 → f) =

τD| $pf |Aq(D0 → f)|2/8πmD, where τD is the lifetime of D0 meson, |pf | is the magnitude of

π(K) momentum and Aq = Aq
SM + Aq

LR. With V L
us ≈ −V L

cd ≈ λ, the squared amplitude

differences between D0 → f and its CP conjugate are
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Clearly, the direct CPA in D0 → f decay will strongly depend on the CP violating phases

in V R
cq,uq.

In the numerical calculations, the taken input values of the SM are listed in Table I [12,

27, 28], where the resulting branching ratios (BRs) for D0 → (π−π+, K−K+) are estimated

as (1.38, 3.96)×10−3, while the current data are B(D0 → π−π+) = (1.400±0.026)×10−3 and

B(D0 → K−K+) = (3.96± 0.08)× 10−3 [28]. We note that the QCD related SM inputs are

extracted from the Cabibbo allowed decays, the influence of considering new effects on these

decays is small. Due to W-exchange topology dominated by the final state interactions, the

short-distance effects could be ignored. Since the CPAs involve V R
ud,us, we need to consider

the constraint from the direct CPA in K → ππ decays. Using the result in Ref. [31], we

know (ε′/ε)K ∼ 1.25 × 10−3gR/gLξIm(V̄ R
us − λV̄ R∗

ud ). Therefore, for avoiding the constraint
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In general, V R
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cs are free parameters. In order to illustrate the impact of LR mixing

effects on the ∆ACP and make the CPAs of π+π− and K+K− modes to be more correlated,

an interesting choice is V̄ R
cd ≈ −λeiθ and V̄ R

cs ≈ eiθ. Hence, the involving free parameters for

the CPAs are the CP phase θ and the mixing angle ξ. Using Eqs. (16) and Aq = Aq
SM +Aq

LR,

the Brs for D0 → (π+π−, K+K−) as a function of ξ and θ are shown in Fig. X(a). We see

that allowed region.. Since we have ACP (K+K−) = −ACP (π+π−) in the chosen parameters,

we just display the ∆ACP as a function of ξ and θ in Fig. X(b)....

Case II: the Eq. (17) becomes

|As|2 − |Ās|2 = 4λ2Es
SMT s

LR sin δsS
(

ImV̄ R∗

ud + ImV̄ R
cs

)

. (19)

Without further limiting the pattern of V R, apparently the situation in the case II is more

complicated. It was pointed out that one can have weak constraints on the mass of WR

when the right-handed flavor mixing matrix is centered around following two forms [23]:

V R
A (α) =











1 0 0

0 cα ±sα

0 sα ∓cα











, V R
B (α) =











0 1 0

cα 0 ±sα

sα 0 ∓cα











(20)

with cα = cosα and sα = sinα and α being an arbitrary angle. We note that the null

elements denote the values that are smaller than O(λ2), thus the effects could be ignored in

the analysis. We will focus on the implication of the two special forms. By using V R
A (α),
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VR
A(α=0) 

¤  VR
cd à0 and  Im(VR

ud)≈0 due to ε’/ε. As a result, CPA in 
D0àππ à0  

3.88

3.88
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Θ W
!rad$



VR
B(α=0) 

¤  VR
ud,cs à0, ACP( D0àKK) à0  

1.37

1.37

1.4

1.4

1.43

1.431.06

0.58
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Ξ !10^"!2#$
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!rad$



Summary 

¤  LHCb and CDF show the direct CP violation in D decays with 
3.8σdeviation from the no CP violation. The “anomaly” could 
be explained by the LR mixing in the general LR model 

¤  The same effects could predict large CPA in doubly Cabibbo 
suppressed process, such as D0àπ- K+ decays 

c d

su c d

su
R

L


