CP Violation in $D \rightarrow \pi \pi, \mathrm{KK}$ due to LR Mixing

Chuan-Hung Chen

Department of Physics
National Cheng-Kung U.

Collaboration with
C.Q. Geng \& Wei Wang
 Unfinished

Outline

- Preamble
- CP asymmetry in D decays
- LR Mixing on $\mathrm{D}^{0} \rightarrow\left(\mathrm{~K}^{+} \mathrm{K}^{-}, \pi^{+} \pi^{-}\right)$
- Summary

Observed CP Asymmetries

- The first event : 1964, indire $\subset \notin \underline{P}$ is observed in K-meson, $\varepsilon \sim 2.2^{*} 10^{-3}$.
- nonzero DCP in K-meson, $\quad \varepsilon^{\prime} / \varepsilon \sim 1.7 * 10^{-3}$
\square indirect CP observed in $B \rightarrow J / \psi K_{S}, \sin 2 \beta_{d}=0.671+/-0.023$
- DCP in $B \rightarrow K \pi$ was observed

$$
\text { Data : } A_{C P}\left(B^{-} \rightarrow B \rightarrow \pi^{+} K^{-}\right)-A_{C P}\left(B \rightarrow \pi^{0} K^{-}\right)=-\left(14.8^{+1.3}-1.4\right) \%
$$

Kobayashi-Maskawa (KM) phase

- In the SM, the $G P$ is arisen from the charged weak current,

$$
\begin{gathered}
-L_{\text {int }}=\bar{U} \gamma_{\mu} V_{L}^{U} V_{L}^{D^{+}} P_{L} D W^{\mu} \\
V_{C K M} \equiv V_{L}^{U} V_{L}^{D^{\dagger}} \\
V_{\text {CKM }} V_{C K M}^{+}=1 \\
\beta=\phi_{1}=\arg \left(-\frac{V_{c d} V_{c b}^{*}}{V_{t d} V_{t b}^{*}}\right) \\
\alpha=\phi_{2}=\arg \left(--\frac{V_{t a} V_{t b}^{*}}{V_{u d} V_{a b}^{*}}\right) \\
\gamma=\phi_{3}=\arg \left(-\frac{V_{\text {uad }} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right) \\
\alpha+\beta+\gamma=\pi
\end{gathered}
$$

With Wolfenstein's parametrization (83)

$$
\begin{gathered}
V_{\text {CKM }} \\
\approx\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2}-\frac{\lambda^{4}}{8} & \lambda & A \lambda^{3}(\rho-\boldsymbol{i} \boldsymbol{\eta}) \\
-\lambda+\frac{A^{2} \lambda^{5}}{2}[1-2(\rho+\mathbf{i} \boldsymbol{\eta})] & 1-\frac{\lambda^{2}}{2}-\frac{\lambda^{4}}{8}\left(1+4 A^{2}\right) & A \lambda^{2} \\
A \lambda^{3}\left[1-\left(1-\frac{\lambda^{2}}{2}\right)(\rho+\boldsymbol{i} \boldsymbol{\eta})\right] & -A \lambda^{2}+\frac{A \lambda^{4}}{2}[1-2(\rho+\boldsymbol{i} \boldsymbol{\eta})] & 1-\frac{A^{2} \lambda^{4}}{2}
\end{array}\right) \\
A \approx 0.808, \lambda \approx 0.2253, \rho \sim 0.13, \eta \sim 0.34
\end{gathered}
$$

- In the SM, the mixing induced CP asymmetry (MICPA) is large in B_{d} decays
\square The MICPAsin B_{s} and D mesons are small. The good placesto probe the new CP mechanism

Why should we care the new CP phase?

\square Faith, no reason to believe that there exists only one phase in nature
\square KM phase can not explain the matter-a ntimatter a symmetry

- Motivated by current data : for instance,
* the π Kpuzzle

Native estimation: $A_{C P}\left(B^{-} \rightarrow \pi^{0} K^{-}\right) \approx A_{C P}\left(B \rightarrow \pi^{+} K^{-}\right)$ Data : $A_{C P}\left(B^{-} \rightarrow B \rightarrow \pi^{+} K^{-}\right)-A_{C P}\left(B \rightarrow \pi^{0} K^{-}\right)=-\left(14.8^{+1.3}{ }_{-1.4}\right) \%$

CDF+D0: a large phase in B_{s} oscillation $\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \phi\right)$

$$
\begin{gathered}
V_{t s} \approx-0.041 e^{-i \beta_{s}} \\
\Delta \Gamma^{s}=2\left|\Gamma_{12}^{s}\right| \cos \phi_{s}, \phi_{s} \approx-2 \beta_{s}
\end{gathered}
$$

$$
\phi_{\mathrm{s}}=[-1.17 ;-0.56]
$$

$$
\cup[-2.60 ;-2.01]
$$

$\Delta \Gamma^{\mathrm{s}}=[+0.084 ;+0.224$]
$\cup[-0.230 ;-0.119] \mathrm{ps}^{-1}$

* D0 observed the like-sign charge asymmetry in dimuon events, defined by

$$
\begin{aligned}
A_{s \ell}^{b}=\begin{array}{ll}
\frac{N_{b}^{++}-N_{b}^{--}}{N_{b}^{++}+N_{b}^{--}} & \begin{array}{l}
\bar{b} \text {-hadron semi-leptonically decay into two } \\
\text { positive(negative) muons }
\end{array} \\
& \text { DO Co, PRD82(10) }
\end{array}
\end{aligned}
$$

Data \& SM prediction

$$
\begin{array}{ll}
A_{s \ell}^{b}=(-0.787 \pm 0.172 \pm 0.093) \times 10^{-3} & \text { PRD84(11) } \\
A_{s \ell}^{b}(S M)=\left(-0.23_{-0.06}^{+0.05}\right) \times 10^{-4} & \text { Lenz \& Nierste, } \\
& \text { J HEP0706(07) }
\end{array}
$$

Time-dependent CPA

- Two neutral strong eigenstates D, D-bar, with weak interactions the corresponding Hamiltonian is given by

$$
H=\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right)-\frac{i}{2}\left(\begin{array}{ll}
\Gamma_{11} & \Gamma_{12} \\
\Gamma_{21} & \Gamma_{22}
\end{array}\right)
$$

- The mass eigenstates:

$$
\begin{aligned}
& \left|D_{L}\right\rangle=p|D\rangle+q|\bar{D}\rangle \\
& \left|D_{H}\right\rangle=p|D\rangle-q|\bar{D}\rangle
\end{aligned}
$$

\square The time evolution of flavor states:

$$
\begin{aligned}
|D(t)\rangle & =g_{+}(t)|D\rangle-\frac{q}{p} g_{-}(t)|\bar{D}\rangle \\
|\bar{D}(t)\rangle & =g_{+}(t)|D\rangle-\frac{p}{q} g_{-}(t)|\bar{D}\rangle
\end{aligned}
$$

\square The relationship among p, q, M, Γ in B-meson:

$$
\frac{q}{p}=\left(\frac{M_{12}^{*}-i \Gamma_{12}^{*} / 2}{M_{12}-i \Gamma_{12} / 2}\right)^{1 / 2}
$$

CP Violation in D decays

- Final states are CP eigenstate
\square Time-integrated CP asymmetry, defined by

$$
\begin{aligned}
A_{C P}(f) & =\frac{\Gamma\left(D^{0} \rightarrow f\right)-\Gamma\left(\overline{D^{0}} \rightarrow \bar{f}\right)}{\Gamma\left(D^{0} \rightarrow f\right)+\Gamma\left(\overline{D^{0}} \rightarrow \bar{f}\right)} \\
& =a_{C P}^{\text {dir }}(f)+\frac{<t>}{\tau} a_{C P}^{i n d}
\end{aligned}
$$

The measurement of LHC b

$$
\begin{aligned}
A_{\text {raw }}(f) & =\frac{N\left(D^{*+} \rightarrow D^{0}(f) \pi_{s}^{+}\right)-N\left(D^{*-} \rightarrow \overline{D^{0}}(f) \pi_{s}^{-}\right)}{N\left(D^{*+} \rightarrow D^{0}(f) \pi_{s}^{+}\right)+N\left(D^{*-} \rightarrow \overline{D^{0}}(f) \pi_{s}^{-}\right)} \\
& =A_{C P}(f)+A_{D}(f)+A_{D}\left(\pi_{s}^{+}\right)+A_{P}\left(D^{*+}\right)
\end{aligned}
$$

$A_{D}(f)$: detection a symmetry of D^{0}
$A_{D}\left(\pi^{+}\right)$: detection asymmetry of soft pion
$A_{p}\left(D^{*+}\right)$: production a symmetry for D^{*+}
$\square A_{D}\left(K^{+} K^{-}\right)=A_{D}\left(\pi^{+} \pi^{-}\right)=0$
$\square \mathrm{A}_{\mathrm{D}}\left(\pi^{+}\right)$and $\mathrm{A}_{\mathrm{P}}\left(\mathrm{D}^{*+}\right)$ are similar in KK and $\pi \pi$, i.e.

$$
\begin{aligned}
\Delta A_{C P} & =A_{\text {raw }}\left(K^{+} K^{-}\right)-A_{\text {raw }}\left(\pi^{+} \pi^{-}\right) \\
& \approx A_{C P}\left(K^{+} K^{-}\right)-A_{C P}\left(\pi^{+} \pi^{-}\right)
\end{aligned}
$$

\square robust a gainst systematics
\square The CP difference

$$
\begin{aligned}
& \Delta A_{C P}=a_{C P}^{d i r}(K K)-a_{C P}^{d i r}(\pi \pi)+\frac{\Delta\langle t\rangle}{\tau} a_{C P}^{i n d} \\
& \frac{\Delta\langle t\rangle}{\tau}=(9.83 \pm 0.22 \pm 0.19) \% \\
& \Delta A_{C P} \approx a_{C P}^{d i r}(K K)-a_{C P}^{d i r}(\pi \pi)
\end{aligned}
$$

\square LHCb result: arXiv:1112.0938

$$
\begin{aligned}
\Delta A_{C P} & =(-0.82 \pm 0.21 \pm 0.11) \% \\
\Delta A_{C P} & =(-0.62 \pm 0.21 \pm 0.10) \%(\text { CDF note } 10784)
\end{aligned}
$$

\square CDF results: arXiv: 1111.5023

$$
\begin{gathered}
a_{C P}^{d i r}(K K)=(-0.24 \pm 0.22 \pm 0.09) \% \\
a_{C P}^{d i r}(\pi \pi)=(0.22 \pm 0.24 \pm 0.11) \%
\end{gathered}
$$

Naïve estimation in the SM

\square Direct CP a symmetry in $D \rightarrow(K K, \pi \pi)$

$$
\begin{gathered}
A m p=\frac{G_{F}}{\sqrt{2}}\left[V_{c q}^{*} V_{u q}\left(T_{S M}^{q}+E_{S M}^{q} e^{i \delta_{S}^{q}}\right)-V_{c b}^{*} V_{u b} P_{S M}^{q} e^{i \phi_{S}^{q}}\right] \\
A_{C P}^{d i r}\left(D^{0} \rightarrow f\right) \sim-\operatorname{Im}\left(\frac{V_{c b}^{*} V_{u b}}{V_{c q}^{*} V_{u q}}\right) \frac{2 P_{S M}^{q}}{\left|T_{S M}^{q}+E_{S M}^{q} e^{i \delta_{S}^{q}}\right|^{2}}\left(T_{S M}^{q} \sin \phi_{S}^{q}+E_{S M}^{q} \sin \left(\delta_{S}^{q}-\phi_{S}^{q}\right)\right)
\end{gathered}
$$

$$
q=d \rightarrow \pi \pi \text { mode, } q=s \rightarrow K K \text { mode }
$$

- E ${ }_{S M}$ stands for the W-exchange a nd long-distance effects are dominated
\square With $\mathrm{Tq}_{S M} \sim \mathrm{E}^{\mathrm{q}}{ }_{S M}$ a nd $\operatorname{Im}\left(\mathrm{V}_{\mathrm{cb}}^{*} \mathrm{~V}_{\mathrm{ub}} / \mathrm{V}_{\mathrm{cq}} \mathrm{V}_{\mathrm{uq}}\right)= \pm \mathrm{A}^{2} \lambda^{4} \eta$

$$
A_{C P}^{d i r}\left(K^{-} K^{+}\right) \sim-A_{C P}^{d i r}\left(\pi^{-} \pi^{+}\right) \sim-0.05 \frac{P_{S M}^{q}}{T_{S M}^{q}} \%
$$

\square Unless ${ }^{\mathrm{Pq}}{ }_{S M} /{ }^{T q}{ }_{S M}>1$, the large magnitude ${ }^{S M_{\mathrm{O}}} \Delta \mathrm{A}_{C P}$ may imply the existence of new physicsand new CP phase

- The deta iled a nalysis with va rious a pproaches in the SM could be referred to

Cheng \& Chiang, 1201.0785, 1205.0580
Feldmann, Na ndi and Soni, 1202.3795
Li, Lu, Yu, 1203.3120
Franco, Mishima, Silvestrini,1203.3131
Brod, Grossman, Kagan, Zupan, 1203.6659

LR Mixing in general $\operatorname{SU}(2)_{\mathrm{L}} \times \operatorname{SU}(2)_{\mathrm{R}} \times \mathrm{U}(1)$
 Chen, Geng, Wang

- Motivation: a ${ }^{\text {ind }}{ }_{c p}$ usually induced by box diagrams is still consistent with no CP violation, for a void ing the constraint, we investigate the $\Delta A_{C P}$ is generated by tree, the same effects a re suppressed at loop
\square The extension of SM based on the gauge symmetry $S U(2)_{L} \times S U(2)_{R} \times U(1)_{B-L}$
\square Two charged gauge bosons, $W_{\mathrm{L}}, \mathrm{W}_{\mathrm{R}}$,
\square Fermion masses are from

$$
\Phi=\left(\begin{array}{ll}
\phi_{1}^{0} & \phi_{1}^{+} \\
\phi_{2}^{-} & \phi_{2}^{0}
\end{array}\right)=\left(2,2^{*}, 0\right)
$$

\square Break $\operatorname{SU}(2)_{L R}$, one can introduce doublets $\delta_{L, R}$ a nd triplets $\Delta_{\text {L,R }}$

- The mass matrix for $W_{L}-W_{R}$ is

$$
\begin{gathered}
M^{2}=\left(\begin{array}{cc}
M_{L}^{2} & M_{L R}^{2} e^{i \alpha} \\
M_{L R}^{2} e^{-i \alpha} & M_{R}^{2}
\end{array}\right) \\
M_{1,2}^{2}=\frac{1}{2}\left[M_{L}^{2}+M_{R}^{2} \mp \sqrt{\left(M_{R}^{2}-M_{L}^{2}\right)^{2}+4 M_{L R}^{4}}\right]
\end{gathered}
$$

- Mass eigenstates vs gauge eigenstates

$$
\begin{gathered}
\binom{W_{L}^{+}}{W_{R}^{+}}=\left(\begin{array}{cc}
\cos \xi & -\sin \xi \\
e^{i \omega} \sin \xi & e^{i \omega} \cos \xi
\end{array}\right)\binom{W_{1}^{+}}{W_{2}^{+}} \\
\tan 2 \xi=\frac{\mp 2 M_{L R}^{2}}{M_{R}^{2}-M_{L}^{2}} \\
m_{R} \gg m_{L}, m_{L R}, \xi \sim M_{L R}^{2} / M_{R}^{2}
\end{gathered}
$$

- LR mixing effects on D decays

- Pure W_{R} contributions are $\mathrm{g}_{\mathrm{R}} / \mathrm{m}_{\mathrm{R}}$ suppressed, hereafter we don't discuss the effects.
- If $M_{R} \sim 1 T e V, M_{L R} \sim 0.1 \mathrm{TeV}, \xi \sim 0\left(10^{-2}\right)$, if no further constraint, it is large enough to enhance the CP in D decays
- In manifest or pseudo-manifest LR model, $\mathrm{V}-=\mathrm{V}^{\mathrm{R}}{ }^{(*)}$, $\xi<0\left(10^{-3}\right)$ Wolfenstein PRD(84)
- The constraint could be released when flavor mixing effects are more arbitrary and camy large CP phases (nonma nifest LR model) langacker\&Sankar PRD(89)
\square Sizable ξ and large phase in V^{R} could lead to large CP in Hyperon decays, chang, He, Pakavasa PRL(95)
\square We study the impact on the CP in $D^{0} \rightarrow \pi \pi, K K$ decays

Decay Amplitudes

$$
\begin{aligned}
\mathcal{H}_{\chi \chi^{\prime}}^{q} & =\frac{4 G_{F}}{\sqrt{2}} \frac{g_{R}}{g_{L}} \xi\left[V_{u q}^{\chi^{\prime}} V_{c q}^{\chi^{*}}\left(C_{1}^{\prime}(\mu)(\bar{u} q)_{\chi^{\prime}}(\bar{q} c)_{\chi}\right)+C_{2}^{\prime}(\mu)\left(\bar{u}_{\alpha} q_{\beta}\right)_{\chi^{\prime}}\left(\bar{q}_{\beta} c_{\alpha}\right)_{\chi}\right) \\
& \left.\left.+V_{u q}^{\chi} V_{c q}^{\chi^{\prime *}}\left(C_{1}^{\prime}(\mu)(\bar{u} q)_{\chi}(\bar{q} c)_{\chi^{\prime}}\right)+C_{2}^{\prime}(\mu)\left(\bar{u}_{\alpha} q_{\beta}\right)_{\chi}\left(\bar{q}_{\beta} c_{\alpha}\right)_{\chi^{\prime}}\right)\right]
\end{aligned}
$$

Here, $\chi=L(R)$ and $\chi^{\prime}=R(L)$ while $q=s(d)$, and $\left(\bar{q} q^{\prime}\right)_{L(R)}=\bar{q} \gamma^{\mu} P_{L(R)} q^{\prime}$. The Wilson coefficients $C_{1}^{\prime}=\eta_{+}$and $C_{2}^{\prime}=\left(\eta_{+}-\eta_{-}\right) / 3$ with QCD corrections could be estimated by [25, 26]

$$
\begin{align*}
& \eta_{+}=\left(\frac{\alpha_{s}(\mu)}{\alpha_{s}\left(m_{c}\right)}\right)^{-3 / 27}\left(\frac{\alpha_{s}(\mu)}{\alpha_{s}\left(m_{b}\right)}\right)^{-3 / 25}\left(\frac{\alpha\left(m_{b}\right)}{\alpha_{s}\left(m_{W}\right)}\right)^{-3 / 23} \\
& \eta_{-}=\eta_{+}^{-8} \tag{14}
\end{align*}
$$

Based on the decay constants and transition form factors, defined by

$$
\begin{aligned}
&\langle 0| \bar{q}^{\prime} \gamma^{\mu} \gamma_{5} q|P(p)\rangle=i f_{P} p^{\mu}, \\
&\left\langle P\left(p_{2}\right)\right| \bar{q} \gamma_{\mu} c\left|D\left(p_{1}\right)\right\rangle=F_{+}^{D P}\left(k^{2}\right)\left\{Q_{\mu}-\frac{Q \cdot k}{k^{2}} k_{\mu}\right\} \\
&+\frac{Q \cdot k}{k^{2}} F_{0}^{D P}\left(k^{2}\right) k_{\mu} \\
& A_{L R}^{q}\left(D^{0} \rightarrow f\right)=\left(V_{c q}^{L^{*}} \bar{V}_{u q}^{R}-\bar{V}_{c q}^{R^{*}} V_{u q}^{L}\right) T_{\chi \chi^{\prime}}^{q} \\
& T_{R L}^{d}=\frac{G_{F}}{\sqrt{2}} \frac{g_{R}}{g_{L}} \xi a_{1}^{\prime} f_{\pi} F_{0}^{D \pi}\left(m_{D}^{2}-m_{\pi}^{2}\right), \\
& T_{L R}^{s}=\frac{f_{K}}{f_{\pi}} \frac{F_{0}^{D K}}{F_{0}^{D \pi}} \frac{m_{D}^{2}-m_{K}^{2}}{m_{D}^{2}-m_{\pi}^{2}} T_{R L}^{d}, \quad \quad a_{1}^{\prime}=C_{1}^{\prime}+C_{2}^{\prime} / N_{c}
\end{aligned}
$$

- CP asymmetries:

$$
A_{C P}\left(D^{0} \rightarrow f\right) \equiv \frac{\Gamma\left(D^{0} \rightarrow f\right)-\Gamma\left(\bar{D}^{0} \rightarrow f\right)}{\Gamma\left(D^{0} \rightarrow f\right)+\Gamma\left(\bar{D}^{0} \rightarrow f\right)}
$$

- With $V^{L}{ }_{u d}=V^{L}{ }_{u s} \sim \lambda$

$$
\begin{aligned}
\left|A^{d}\right|^{2}-\left|\bar{A}^{d}\right|^{2} & =-4 E_{S M}^{d} T_{R L}^{d} \sin \delta_{S}^{d}\left(\lambda^{2} \operatorname{Im} \bar{V}_{u d}^{R^{*}}+\lambda m \bar{V}_{c d}^{R}\right), \\
\left|A^{s}\right|^{2}-\left|\bar{A}^{s}\right|^{2} & =-4 E_{S M}^{s} T_{L R}^{s} \sin \delta_{S}^{s}\left(\lambda I m \bar{V}_{u s}^{R^{*}}-\lambda^{2} \operatorname{Im} \bar{V}_{c s}^{R}\right) .
\end{aligned}
$$

$$
\bar{V}^{R}=e^{i \omega} V^{R}
$$

\square The CPAs depend on the pattem of V^{R}

Constraint from $\varepsilon^{\prime} / \varepsilon$

\square The tree induced CP also contributes to direct CP violation in $K \rightarrow \pi \pi$

$$
\left(\epsilon^{\prime} / \epsilon\right)_{K} \sim 1.25 \times 10^{-3} g_{R} / g_{L} \xi \operatorname{Im}\left(\bar{V}_{u s}^{R}-\lambda \bar{V}_{u d}^{R^{*}}\right) .
$$

He, McKellar, Pakvasa, PRL(88)

- To avoid the constra int from DCPV in K decays, we considertwo cases:
$>\operatorname{Im}\left(\bar{V}_{u s, u d}^{R}\right) \approx 0$
$>\operatorname{Im} \bar{V}_{u s}^{R} \approx \lambda \operatorname{Im} \bar{V}_{u d}^{R *}$
\square The SM inputs : arxiv:1201.0785, cheng \&Chiang
TABLE I. Numerical inputs for the parameters in the SM.

$T_{S M}^{d}$	$T_{S M}^{s}$	$E_{S M}^{d}$	$E_{S M}^{s}$	δ_{S}^{d}	δ_{S}^{s}
$3.0 \times 10^{-6} \mathrm{GeV}$	$4.0 \times 10^{-6} \mathrm{GeV}$	$1.3 \times 10^{-6} \mathrm{GeV}$	$1.6 \times 10^{-6} \mathrm{GeV}$	145°	108°
$V_{u s}^{L}$	$m_{\pi(K)}$	m_{D}	$f_{\pi(K)}$	$F_{0}^{D \pi(K)}$	m_{t}
0.22	$0.139(0.497) \mathrm{GeV}$	1.863 GeV	$0.13(0.16) \mathrm{GeV}$	$0.666(0.739)$	162.8 GeV

- The BRsfor $D \rightarrow(K K, \pi \pi)$ in the $S M$ are

$$
\begin{gathered}
\mathcal{B}\left(D^{0} \rightarrow K^{-} K^{+}\right)=4.0[3.94 \pm 0.07] \times 10^{-3} \\
\mathcal{B}\left(D^{0} \rightarrow \pi^{-} \pi^{+}\right)=1.4[1.397 \pm 0.026] \times 10^{-3}
\end{gathered}
$$

Results: Case \| $\operatorname{Im}\left(\bar{V}_{u s u d}^{R}\right) \approx 0$

C ase II: $\operatorname{Im} \bar{v}_{u s}^{R} \approx \lambda I m \bar{V}_{u d}^{R *}$

- We get

$$
\begin{aligned}
\left|A^{d}\right|^{2}-\left|\bar{A}^{d}\right|^{2} & =-4 E_{S M}^{d} T_{R L}^{d} \sin \delta_{S}^{d}\left(\lambda^{2} \operatorname{Im} \bar{V}_{u d}^{R^{*}}+\lambda \operatorname{Im} \bar{V}_{c d}^{R}\right) \\
\left|A^{s}\right|^{2}-\left|\bar{A}^{s}\right|^{2} & =4 \lambda^{2} E_{S M}^{s} T_{L R}^{s} \sin \delta_{S}^{s}\left(\operatorname{Im} \bar{V}_{u d}^{R^{*}}+\operatorname{Im} \bar{V}_{c s}^{R}\right)
\end{aligned}
$$

- We adopt the pattems for the numerical a nalysis

$$
V_{A}^{R}(\alpha)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{\alpha} & \pm s_{\alpha} \\
0 & s_{\alpha} & \mp c_{\alpha}
\end{array}\right), \quad V_{B}^{R}(\alpha)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
c_{\alpha} & 0 & \pm s_{\alpha} \\
s_{\alpha} & 0 & \mp c_{\alpha}
\end{array}\right)
$$

we adopt $\alpha=0$ for the numerical a nalysis

$\mathrm{V}_{\mathrm{A}}(\alpha=0)$

$\square \mathrm{V}_{\mathrm{cd}} \rightarrow 0$ and $\operatorname{Im}\left(\mathrm{V}^{\mathrm{R}} \mathrm{ud}\right) \approx 0$ due to $\varepsilon^{\prime} / \varepsilon$. As a result, CPA in $\mathrm{D}^{0} \rightarrow \pi \pi \rightarrow 0$

$\mathrm{V}_{\mathrm{B}}(\alpha=0)$

$\square \mathrm{V}_{\mathrm{ud}, \mathrm{cs}} \rightarrow 0, \mathrm{~A}_{\mathrm{cp}}\left(\mathrm{D}^{0} \rightarrow \mathrm{KK}\right) \rightarrow 0$

Summary

- LHCb and CDF show the direct CP violation in D decays with 3.8σ deviation from the no CP violation. The "a nomaly" could be explained by the LR mixing in the general LR model
- The same effects could predict large CPA in doubly Cabibbo suppressed process, such as $D^{0} \rightarrow \pi^{-} K^{+}$decays

