New physics search in B decays involving a tensor (K-resonance) meson

Kwei-Chou Yang Chung-Yuan Christian University, Taiwan

2012 Cross Strait Meeting on Particle Physics and Cosmology

Outline

- lacktriangle Polarization in $B \rightarrow VV$
- igoplus Can we solve the observed $B \to \phi K^*$ anomaly in SM?
- lacktriangle Annihilation in $B \to \phi K^*$, ρK^* [BBNS parametrization(QCDF)]
- ♦ New Physics in $B \to \phi K^*$?
- **♦** Further test
- ◆ Conclusion

B decays into two vector mesons

Polarization reveals spin structure in the decay

Helicity amplitudes: H_{00} , H_{++} , H_{--}

11 observables(\overline{B} and B): 6| H_i |, 5 arg(\overline{H}_i / H_i)

H₀ requires no spin flip, H₁ requires one spin flip H₁ requires two spin flips.

Introduction

■Polarization puzzle in charmless B→VV decays

$$H_{00}: H_{--}: H_{++} = 1: \frac{\Lambda}{m_b}: \left(\frac{\Lambda}{m_b}\right)^2$$

In transversity basis $A_{\perp} = (H^{--} + H^{++})/\sqrt{2}, \quad A_{\parallel} = (H^{--} - H^{++})/\sqrt{2}$

$$f_T \equiv f_{\parallel} + f_{\perp} = 1 - f_L = O(m_V^2 / m_B^2), \quad f_{\parallel} / f_{\perp} = 1 + O(m_V / m_B)$$

Why is f_T sizable ~ 0.5 in B \rightarrow K* ϕ decays ?

Search of new physics in B→VV decays

Transversity Basis

Transverse amplitudes in transversity basis

$$\overline{A}_{\parallel} = (\overline{H}_{++} + \overline{H}_{--})/\sqrt{2}$$

$$\overline{A}_{\perp} = -(\overline{H}_{++} - \overline{H}_{--})/\sqrt{2}$$

The $B \to V_1 V_2$ decay amplitude can be written as

$$M = A_0 \varepsilon_1^{*L} \cdot \varepsilon_2^{*L} - \frac{1}{\sqrt{2}} A_{\parallel} \bar{\varepsilon}_1^{*T} \cdot \bar{\varepsilon}_2^{*T} - \frac{i}{\sqrt{2}} A_{\perp} \bar{\varepsilon}_1^{*T} \times \bar{\varepsilon}_2^{*T} \cdot \hat{p}$$

♣ Polarization vectors in

$$\varepsilon_{V_1}^{\mu}(0) = \frac{1}{m_{V_1}}(|\vec{p}|, 0, 0, -E), \qquad \qquad \varepsilon_{V_2}^{\mu}(0) = \frac{1}{m_{V_2}}(|\vec{p}|, 0, 0, E)$$

(i) Helicity basis

$$\varepsilon_{V_1}^{\mu}(\pm 1) = \frac{1}{\sqrt{2}}(0, \mp 1, +i, 0), \qquad \varepsilon_{V_2}^{\mu}(\pm 1) = \frac{1}{\sqrt{2}}(0, \mp 1, -i, 0)$$

(ii) Transverse basis: If choosing $\varepsilon_{V_2}^T=(0,1,0,0)$, then $\varepsilon_{V_1}^T$ can be decomposed in (0,1,0,0) and (0,0,-1,0) directions.

Jacob-Wick convention

Jackson convention

In the Jackson convention:

$$\overline{A}_0^{SM} \propto f_{\phi} m_B^2 \zeta_{\parallel},$$

$$\overline{A}_{\parallel}^{SM} \propto -\sqrt{2} f_{\phi} m_{\phi} m_B \zeta_{\perp},$$

$$\overline{A}_{\perp}^{SM} \propto -\sqrt{2} f_{\phi} m_{\phi} m_B \zeta_{\perp},$$

Scenario with the SM

Annihilation

In SM, two effects are important:

■Annihilation H_{00} : H_{--} : $H_{++} = \frac{1}{m_b^2} \ln^2 \frac{m_b}{\Lambda}$: $\frac{1}{m_b^2} \ln^2 \frac{m_b}{\Lambda}$: $\frac{1}{m_b^4}$ (Kagan, 04)

Annihilation topology: \longrightarrow overall $1/m_b$

Helicity-flips: $1/m_b$

Parametrization
$$\int_{0}^{1} \frac{dx}{x} = \ln \frac{m_B}{\Lambda} (1 + \rho_A e^{i\phi_A})$$

$B \rightarrow K^* \phi$ (without annihilation)

$$\begin{split} \mathcal{A}_{\bar{B}\to\bar{K}^*\phi}^h &\approx V_c(\alpha_3^h + \alpha_4^{c,h} + \beta_3^h - \frac{1}{2}\alpha_{3,\mathrm{EW}}^h)X_{\bar{K}^*\phi}^h. \\ \alpha_3 = & a_3 + a_5, \quad \alpha_4 = a_4 - r_\chi^\phi a_6, \quad \alpha_{3,\mathrm{EW}} = a_9 + a_7, \quad \beta_3 = \text{penguin ann} \\ X_{\bar{K}^*\phi}^h &= \langle \phi \, | \, J_\mu \, | \, 0 \rangle \langle \bar{K}^* \, | \, J^\mu \, | \, B \rangle, \qquad | \, X_{\bar{K}^*\phi}^0 \, | : \, | \, X_{\bar{K}^*\phi}^- \, | : \, | \, X_{\bar{K}^*\phi}^+ \, | = 1 : 0.35 : 0.007 \end{split}$$

Coefficients are helicity dependent!

PRD,2008, Hai-Yang Cheng, KCY

$$\left. \frac{\mathcal{A}^{-}}{\mathcal{A}^{0}} \right|_{\bar{B} \to \bar{K}^{*} \phi} \approx \left(\frac{\alpha_{3}^{-} + \alpha_{4}^{c,-} - \frac{1}{2} \alpha_{3,\mathrm{EW}}^{-}}{\alpha_{3}^{0} + \alpha_{4}^{c,0} - \frac{1}{2} \alpha_{3,\mathrm{EW}}^{0}} \right) \left(\frac{X_{\bar{K}^{*} \phi}^{-}}{X_{\bar{K}^{*} \phi}^{0}} \right) \text{ with } \beta_{3} = 0$$

constructive (destructive) interference in $A^{-}(A^{0}) \Rightarrow f_{1} \sim 0.58$

NLO corrections alone will bring down f_L significantly!

Br ~4.3*10-6 (without annihilation), too small compared with data

Although f_L is reduced to 60% level, polarization puzzle is not resolved as the **predicted** rate, BR~ 4.3*10⁻⁶, is too small compared to the data,~ 10*10⁻⁶ for B \rightarrow K* ϕ

$$P^{c} = [a_{4}^{c} + r_{\chi} a_{6}^{c}]_{SD} + \beta_{3}^{c} + \dots$$
penguin annihilation

■ Br & f_L are fit by adjusting $\Rightarrow \rho_A \simeq 0.65$, $\phi_A \simeq -53^\circ$

Decay	$\mathcal B$		f_L		f_{\perp}	
	Theory	Expt	Theory	Expt	Theory	Expt
$B^- \to K^{*-} \phi$	$10.0^{+1.4+12.3}_{-1.3-6.1}$	10.0 ± 1.1	$0.49^{+0.51}_{-0.42}$	0.50 ± 0.05	$0.25^{+0.21}_{-0.25}$	0.20 ± 0.05
$\overline{B}^0 \to \bar{K}^{*0} \phi$	$9.5^{+1.3+11.9}_{-1.2-5.9}$	9.5 ± 0.8	$0.50^{+0.50}_{-0.42}$	0.484 ± 0.034	$0.25^{+0.21}_{-0.25}$	0.256 ± 0.032

$$|\mathbf{f}|| = |\mathbf{f}| = 0.25$$

Parameter	h = 0	h = -	Parameter	h = 0	h = -
$\alpha_1(ho K^*)$	0.96 + 0.02i	1.11 + 0.03i	$lpha_{3, ext{EW}}(K^* ho)$	-0.009 - 0.000i	0.005 - 0.000i
$lpha_2(K^* ho)$	0.28 - 0.08i	-0.17 - 0.17i	$lpha_{4, ext{EW}}(K^* ho)$	$-0.002 +\ 0.001i$	0.001 + 0.001i
$lpha_4^u(ho K^*)$	$-0.022 - \ 0.014i$	$-0.048 - \ 0.016i$	$eta_3(ho K^*)$	$0.015 - \ 0.020i$	-0.012 + 0.016i
$lpha_4^c(ho K^*)$	$-0.026 - \ 0.014i$	$-0.050 - \ 0.006i$			

$$\frac{\mathcal{A}^{-}}{\mathcal{A}^{0}} \bigg|_{\bar{B}^{0} \to \bar{K}^{*0} \rho^{0}} \approx \left(\frac{\alpha_{4}^{c,-} - \frac{3}{2} \alpha_{3,\mathrm{EW}}^{-}}{\alpha_{4}^{c,0} - \frac{3}{2} \alpha_{3,\mathrm{EW}}^{0}} \right) \left(\frac{X_{\bar{K}^{*} \rho}^{-}}{X_{\bar{K}^{*} \rho}^{0}} \right) \\
\frac{\mathcal{A}^{-}}{\mathcal{A}^{0}} \bigg|_{B^{-} \to K^{*-} \rho^{0}} \approx \left(\frac{\alpha_{4}^{c,-} + \frac{3}{2} \alpha_{3,\mathrm{EW}}^{-}}{\alpha_{4}^{c,0} + \frac{3}{2} \alpha_{3,\mathrm{EW}}^{0}} \right) \left(\frac{X_{\bar{K}^{*} \rho}^{-}}{X_{\bar{K}^{*} \rho}^{0}} \right) \right)$$

destructive
destructive
constructive

with $\beta_3=0$

\Rightarrow f_L(K*- ρ^0)=0.96, f_L(K*0 ρ^0)=0.47 (=0.91 if a_ih are helicity indep)

Decay	I	\mathbf{Expt}			
Decay	\mathcal{B}	f_L	\mathcal{B}	f_L	
$B^- o ar K^{*0} ho^-$	9.2 ± 1.5	0.48 ± 0.08	3.8	0.78	
$B^- \to K^{*-} \rho^0$	< 6.1	$0.96^{+0.06}_{-0.16}$	3.6	0.96	
$\overline B^0 o K^{*-} ho^+$	< 12	_	3.6	0.84	
$\overline B^0 o ar K^{*0} ho^0$	$\underline{5.6\pm1.6}$	0.57 ± 0.12	<u>1.1</u>	0.47	

Without Annihilation

But, the predicted rates for $K^{*-}\rho^{0}$ & $K^{*0}\rho^{0}$ are too small !

Choose $K^{*0}\rho^{-}$ as an input, a fit to BR and f_L yields $\rho_A \simeq 0.78$, $\phi_A \simeq -43^{\circ}$, slightly different from the ones $\rho_A \simeq 0.65$, $\phi_A \simeq -53^{\circ}$ inferred from $B \rightarrow K^* \phi$

Process dependent

Decay			f_L		f_{\perp}	
Docay	Theory	Expt	Theory	Expt	Theory	\mathbf{Expt}
$B^- \to \bar{K}^{*0} \rho^{-a}$	$9.2^{+1.2+3.6}_{-1.1-5.4}$	9.2 ± 1.5	$0.48^{+0.52}_{-0.40}$	0.48 ± 0.08	$0.26^{+0.20}_{-0.26}$	
$B^- \to K^{*-} \rho^0$	$5.5^{+0.6+1.3}_{-0.5-2.5}$	< 6.1	$0.67^{+0.31}_{-0.48}$	$0.96^{+0.06}_{-0.16}$ b	$0.16^{+0.24}_{-0.15}$	
$\overline{B}^0 \to K^{*-} \rho^+$	$8.9^{+1.1+4.8}_{-1.0-5.5}$	< 12	$0.53^{+0.45}_{-0.32}$		$0.24^{+0.16}_{-0.22}$	
$\overline B^0 o ar K^{*0} ho^0$	$4.6_{-0.5-3.5}^{+0.6+3.5}$	3.4 ± 1.0	$0.39^{+0.60}_{-0.31}$	0.57 ± 0.12	$0.30^{+0.15}_{-0.30}$	

 $K^*-\rho^0$ was contaminated by $K^*-f_0(980)$ in previous 2003 measurement of $f_L(K^*-\rho^0)$. BaBar measurement (2006) of $f_L=0.9\pm0.2$ has only 2.5 significance

$$f_L(K^{*-}\rho^0) > f_L(K^{*-}\rho^+) > f_L(\bar{K}^{*0}\rho^-) > f_L(\bar{K}^{*0}\rho^0)$$

Tree-dominated VV modes

Decay	${\cal B}$		f_L		f_{\perp}	
Decay	Theory	Expt	Theory	Expt	Theory	Expt
$B^- \to \rho^- \rho^0$	$20.0^{+4.0+2.0}_{-1.9-0.9}$	$24.0^{+1.9}_{-2.0}$	$0.96^{+0.02}_{-0.02}$	0.950 ± 0.016	0.02 ± 0.01	
$\overline{B}^0 \to \rho^+ \rho^-$	$25.5^{+1.5+2.4}_{-2.6-1.5}$	$24.2^{+3.1}_{-3.2}$	$0.92^{+0.01}_{-0.02}$	$0.978^{+0.025}_{-0.022}$	$0.04^{+0.01}_{-0.00}$	
$\overline B^0 o ho^0 ho^0$	$0.9^{+1.5+1.1}_{-0.4-0.2}$	$0.73^{+0.27}_{-0.28}$	$0.92^{+0.06}_{-0.36}$	$0.75^{+0.12}_{-0.15}$	$0.04^{+0.14}_{-0.03}$	
$B^- \to \rho^- \omega$	$19.2^{+3.3+1.7}_{-1.6-1.0}$	15.9 ± 2.1	$0.96^{+0.02}_{-0.02}$	0.90 ± 0.06	0.02 ± 0.01	
$\overline{B}^0 \to \rho^0 \omega$	$0.1^{+0.1+0.4}_{-0.1-0.0}$	< 1.5	$0.55^{+0.47}_{-0.29}$		$0.22^{+0.16}_{-0.23}$	

- Longitudinal amplitude dominates tree-dominated decays except for $\rho^0\omega$
- Predicted $B\rightarrow \rho\rho$, $\omega\rho$ rates agree with the data.

H.Y. Cheng & KCY, PRD, 2008 vs. data (2010)

Central values correspond to $\rho_A=\phi_A=0$

Scenario with New Physics

New Physics: Color Diploe Operator?

Possible NP effects to chromomagnetic dipole operator:

$$O_{8g} = \frac{g_s}{8\pi^2} m_b \overline{s} \sigma^{\mu\nu} (1 + \gamma_5) T^a b G^a_{\mu\nu},$$

$$G_{8g}^0 = -2 \int_0^1 du \, \frac{\Phi_{\parallel}^V(u)}{1-u} \,,$$

$$G_{8g}^{\pm} = \int_0^1 \frac{du}{\bar{u}} \left[\int_0^u \left(\Phi_{\parallel}^V(v) - g_{\perp}^{(v)}(v) \right) dv - \bar{u}g_{\perp}^{(v)}(u) \mp \frac{\bar{u}}{4} \frac{g_{\perp}^{(a)}(u)}{du} + \frac{g_{\perp}^{(a)}(u)}{4} \right] = 0$$

by P.Das, KCY, PRD71,094002(2005); confirmed by A.Kagan.

MP gives no contribution via chromomagnetic dipole operator

Helicity conservation requires that the outgoing s and \bar{s} arising from $s-\bar{s}-n$ gluons vertex have opposite helicities. The transversely polarized amplitudes should be suppressed as $\overline{H}_{00}:\overline{H}_{--}:\overline{H}_{++}\sim\mathcal{O}(1):\mathcal{O}(1/m_b):\mathcal{O}(1/m_b^2)$; otherwise the results will violate the angular momentum conservation.

Rechecked recently by Y.D.Yang et.al., hep-ph/0411211 v2, but $G_{8g}^- \neq 0$? (Still no help)

New Physics: Right-handed currents?

Arr Could NP of Right-handed currents explain the ϕK^* data? Contributions from right-handed current

$$\propto \langle \overline{K}^* | \bar{s} \gamma_\mu (1 + \gamma_5) b | \overline{B} \rangle \langle \phi | s \gamma^\mu (1 \mp \gamma_5) s | 0 \rangle = \langle \overline{K}^* | \bar{s} \gamma_\mu (1 + \gamma_5) b | \overline{B} \rangle \langle \phi | s \gamma^\mu s | 0 \rangle$$

compared with the SM result

$$\propto \langle \overline{K}^* | \bar{s} \gamma_{\mu} (1 - \gamma_5) b | \overline{B} \rangle \langle \phi | s \gamma^{\mu} s | 0 \rangle$$

- If the right-handed currents contribute constructively to \overline{A}_{\perp} , they become destructively to $\overline{A}_{0,\parallel}$, vice versa.
- Choosing $|\overline{A}_{\perp}/\overline{A}_0|^2 \approx 1/2$ to account for the data, however the resulting $|\overline{A}_{\parallel}|^2 \ll |\overline{A}_{\perp}|^2$ will be in contrast to the recent observations
- Answer is "NO".
- We do not consider NP of left-handed currents, $\bar{s}\gamma_{\mu}(1-\gamma_{5})b\ \bar{s}\gamma^{\mu}(1\mp\gamma_{5})s$, which give corrections to SM Wilson coefficients since they have no help for understanding large polarized amplitudes

Possible New Physics

$$ightharpoonup \overline{s}\sigma^{\mu\nu}(1+\gamma_5)b\ \overline{s}\sigma_{\mu\nu}(1+\gamma_5)s$$
, $\overline{s}(1+\gamma_5)b\ \overline{s}(1+\gamma_5)s$

$$\overline{H}_{00}:\overline{H}_{--}:\overline{H}_{++}\sim\mathcal{O}(1/m_b):\mathcal{O}(1):\mathcal{O}(1/m_b^2)$$

$$ightharpoonup \overline{s}\sigma^{\mu\nu}(1-\gamma_5)b\ \overline{s}\sigma_{\mu\nu}(1-\gamma_5)s$$
, $\overline{s}(1-\gamma_5)b\ \overline{s}(1-\gamma_5)s$

$$\overline{H}_{00}: \overline{H}_{--}: \overline{H}_{++} \sim \mathcal{O}(1/m_b): \mathcal{O}(1/m_b^2): \mathcal{O}(1)$$

TENSOR operators can be related to the SCALAR operators by Fierz transformation.

Phys. Rev. D71, 094002 (2005), KCY& Das

See also works by C.S. Kim, Y.D. Yang; Alex Kagan

Table 2: Possible NP operators and their candidacy in satisfying the anomaly resolution criteria. We have adopted the convention $\Gamma_1 \otimes \Gamma_2 \equiv \overline{s}\Gamma_1 b \ \overline{s}\Gamma_2 s$.

Model	Operators	\overline{H}_{00}	$\overline{H}_{}$	\overline{H}_{++}	Choice
SM	$\gamma^{\mu}(1-\gamma_5)\otimes\gamma_{\mu}(1\mp\gamma_5)$	$\mathcal{O}(1)$	$\mathcal{O}(1/m_b)$	$\mathcal{O}(1/m_b^2)$	
NP	$\gamma^{\mu}(1+\gamma_5)\otimes\gamma_{\mu}(1+\gamma_5)$	$\mathcal{O}(1)$	$\mathcal{O}(1/m_b^2)$	$\mathcal{O}(1/m_b)$	N
NP	$\gamma^{\mu}(1+\gamma_5)\otimes\gamma_{\mu}(1-\gamma_5)$	$\mathcal{O}(1)$	$\mathcal{O}(1/m_b^2)$	$\mathcal{O}(1/m_b)$	N
NP	$(1+\gamma_5)\otimes(1+\gamma_5)$	$\mathcal{O}(1/m_b)$	$\mathcal{O}(1)$	$\mathcal{O}(1/m_b^2)$	Υ
NP	$(1-\gamma_5)\otimes(1-\gamma_5)$	$\mathcal{O}(1/m_b)$	$\mathcal{O}(1/m_b^2)$	$\mathcal{O}(1)$	Υ
NP	$(1+\gamma_5)\otimes(1-\gamma_5)$	$\mathcal{O}(1)$	$\mathcal{O}(1/m_b^2)$	$\mathcal{O}(1/m_b)$	N
NP	$(1-\gamma_5)\otimes(1+\gamma_5)$	$\mathcal{O}(1)$	$\mathcal{O}(1/m_b)$	$\mathcal{O}(1/m_b^2)$	N
NP	$\sigma^{\mu\nu}(1+\gamma_5)\otimes\sigma_{\mu\nu}(1+\gamma_5)$	$\mathcal{O}(1/m_b)$	$\mathcal{O}(1)$	$\mathcal{O}(1/m_b^2)$	Υ
NP	$\sigma^{\mu\nu}(1-\gamma_5)\otimes\sigma_{\mu\nu}(1-\gamma_5)$	$\mathcal{O}(1/m_b)$	$\mathcal{O}(1/m_b^2)$	$\mathcal{O}(1)$	Υ
NP	$\sigma^{\mu\nu}(1+\gamma_5)\otimes\sigma_{\mu\nu}(1-\gamma_5)$	$\mathcal{O}(1)$	$\mathcal{O}(1/m_b^2)$	$\mathcal{O}(1/m_b)$	N
NP	$\sigma^{\mu\nu}(1-\gamma_5)\otimes\sigma_{\mu\nu}(1+\gamma_5)$	$\mathcal{O}(1)$	$\mathcal{O}(1/m_b)$	$\mathcal{O}(1/m_b^2)$	N

(pseudo-)scalar-type operators

$$O_{15} = \overline{s}(1+\gamma^5)b\ \overline{s}(1+\gamma^5)s, \qquad O_{16} = \overline{s}_{\alpha}(1+\gamma^5)b_{\beta}\ \overline{s}_{\beta}(1+\gamma^5)s_{\alpha},$$

$$O_{17} = \overline{s}(1-\gamma^5)b\ \overline{s}(1-\gamma^5)s, \qquad O_{18} = \overline{s}_{\alpha}(1-\gamma^5)b_{\beta}s\ \overline{s}_{\beta}(1-\gamma^5)s_{\alpha},$$

tensor-type operators

$$O_{23} = \overline{s}\sigma^{\mu\nu}(1+\gamma^5)b\ \overline{s}\sigma_{\mu\nu}(1+\gamma^5)s, \qquad O_{24} = \overline{s}_{\alpha}\sigma^{\mu\nu}(1+\gamma^5)b_{\beta}\ \overline{s}_{\beta}\sigma_{\mu\nu}(1+\gamma^5)s_{\alpha},$$

$$O_{25} = \overline{s}\sigma^{\mu\nu}(1-\gamma^5)b\ \overline{s}\sigma_{\mu\nu}(1-\gamma^5)s, \qquad O_{26} = \overline{s}_{\alpha}\sigma^{\mu\nu}(1-\gamma^5)b_{\beta}\ \overline{s}_{\beta}\sigma_{\mu\nu}(1-\gamma^5)s_{\alpha},$$

By Fierz transformation

$$O_{15} = \frac{1}{12}O_{23} - \frac{1}{6}O_{24}, \qquad O_{16} = \frac{1}{12}O_{24} - \frac{1}{6}O_{23}$$
 $O_{17} = \frac{1}{12}O_{25} - \frac{1}{6}O_{26}, \qquad O_{18} = \frac{1}{12}O_{26} - \frac{1}{6}O_{25}$

Can only (pseudo-)scalar-type operators explain the data?

Answer: NO

In the minimal supersymmetric standard model (MSSM), such scalar/pseudoscalar operators can be induced by the penguin diagrams of neutral-Higgs bosons.

A combined analysis of the decays $B \to K\eta^{(l)}$, ϕK^* decays shows that the NP effects only due to (pseudo-)scalar-type operators is much smaller.

consistent with the data for $B_s \rightarrow \mu^+ \mu^-$

PRD77, 035013 (2008), H. Hatanaka, KCY

Looking for clean evidence for annihilations and new physics

Why do we study $h_1(1380)K^*$?

Reasons:

- ♦ $B \rightarrow h_1(1380)K^*$ is a factorization forbidden process.
 - for h_1 , $I^G(J^{PC}) = ?^-(1^{+-})$, the charge conjugate (or say G-parity) of which does not match with the axial current; the quark content is $\bar{s}s$ suggested in the QCD sum rule calculation.
 - In SM, the leading term in the amplitude is $\mathcal{O}(\alpha_s)$: QCD corrections to the vertex, spectator scattering, penguin, spectator, annihilation.
 - local axial vector current ⇒ non-local axial vector current
 - ullet the DA defined by the non-local axial vector current is antisymmetric under the exchange of s and \bar{s} .

NPB,2007; JHEP,2005, KCY

the tensor current can couple to h₁ with non-vanishing coupling constant. Sensitive to NEW PHYSICS

PRD, 2005, KCY

Comparison for new-physics amplitude

$$\begin{split} \bar{B} \to h_1(1380) \bar{K}^* \\ & \qquad \qquad \bar{A}_0^{NP} \quad \simeq \quad 4 \frac{G_F}{\sqrt{2}} f_{h_1}^T m_B m_{h_1} \left[\tilde{a}_{23} \bigoplus \tilde{a}_{25} \right] \zeta_{\parallel}, \\ & \qquad \qquad \bar{A}_{\parallel}^{NP} \quad \simeq \quad -4 \frac{G_F}{\sqrt{2}} \sqrt{2} f_{h_1}^T m_B^2 (\tilde{a}_{23} \bigoplus \tilde{a}_{25}) \zeta_{\perp}, \\ & \qquad \qquad \bar{A}_{\perp}^{NP} \quad \simeq \quad -4 \frac{G_F}{\sqrt{2}} \sqrt{2} f_{h_1}^T m_B^2 (\tilde{a}_{23} \bigoplus \tilde{a}_{25}) \zeta_{\perp}, \\ & \qquad \bar{B} \to \phi \bar{K}^* \\ & \qquad \qquad \bar{A}_0^{NP} \quad \simeq \quad -4 i \frac{G_F}{\sqrt{2}} f_{\phi}^T m_B m_{\phi} \left[\tilde{a}_{23} - \tilde{a}_{25} \right] \zeta_{\parallel}, \\ & \qquad \bar{A}_{\parallel}^{NP} \quad \simeq \quad 4 i \frac{G_F}{\sqrt{2}} \sqrt{2} f_{\phi}^T m_B^2 (\tilde{a}_{23} - \tilde{a}_{25}) \zeta_{\perp}, \\ & \qquad \bar{A}_{\perp}^{NP} \quad \simeq \quad 4 i \frac{G_F}{\sqrt{2}} \sqrt{2} f_{\phi}^T m_B^2 (\tilde{a}_{23} + \tilde{a}_{25}) \zeta_{\perp}, \end{split}$$

In units of 10⁻⁶

SM with annihilations

Mode	${\mathcal B}$	f_L
$B^- \to h_1(1380)K^{*-}$	$8.1^{+4.0+21.3}_{-2.8-6.6}$	$0.87^{+0.13}_{-0.75}$
	$3.7^{+2.0+7.8}_{-1.3-2.2}$	$0.88^{+0.12}_{-0.53}$
$\bar{B}^0 \to h_1(1380)\bar{K}^{*0}$	$8.3^{+4.4+21.8}_{-2.9-6.9}$	$0.88^{+0.12}_{-0.80}$
	$3.9^{+1.9+8.3}_{-1.3-2.6}$	$0.88^{+0.12}_{-0.64}$

NP scenario

New physics	Process	$\mathrm{BR}_{\mathrm{tot}}$	BR_{\parallel}	${ m BR}_{\perp}$
Scenario 1:	$B^- \to h_1(1380)K^{*-}$	15.3 ± 4.0	3.4 ± 1.5	2.0 ± 1.0
$ ilde{a}_{25}$	$\overline{B}^0 \to h_1(1380)K^{*0}$	14.5 ± 4.0	3.2 ± 1.5	2.0 ± 1.0
Scenario 2:	$B^- \to h_1(1380)K^{*-}$	9.1 ± 2.0	2.1 ± 0.5	2.0 ± 0.5
$ ilde{a}_{23}$	$\overline{B}^0 \to h_1(1380)K^{*0}$	8.5 ± 2.0	2.0 ± 0.5	1.8 ± 0.5

New physics can be distinguishable

 $f_L^0.4-0.5$

Annihilation contributions (and f₁) are highly related to

(i)
$$\Phi_{\perp}^{1^3P_1}$$
 for $B \rightarrow f_1 K^*, a_1 K^*$

(ii)
$$\Phi_{\parallel}^{\mathbf{1}^{1}P_{\mathbf{1}}}$$
 for $B \rightarrow h_{1} K^{*}$, $b_{1} K^{*}$

$$A_3^{f,0}(V^3P_1) \approx 18\pi\alpha_s(2X_A^0 - 1)\left[a_1^{\perp,^3P_1}r_{\chi}^{^3P_1}(X_A^0 - 3) - r_{\chi}^V(X_A^0 - 2)\right]$$

$$A_3^{f,-}(V^3P_1) \approx -18\pi\alpha_s(2X_A^- - 3)$$

$$\times \left[\frac{m_3P_1}{m_V}r_{\chi}^V(X_A^- - 1) + 3a_1^{\perp,^3P_1}\frac{m_V}{m_3P_1}r_{\chi}^{^3P_1}(X_A^- - 2)\right]$$

$$A_{3}^{f,0}(V^{1}P_{1}) \approx 18\pi\alpha_{s}(X_{A}^{0}-2)\left[r_{\chi}^{1}P_{1}(2X_{A}^{0}-1)-a_{1}^{\parallel,1}P_{1}\right]r_{\chi}^{V}(6X_{A}^{0}-11)\right]$$

$$A_{3}^{f,-}(V^{1}P_{1}) \approx -18\pi\alpha_{s}(X_{A}^{-}-1)$$

$$\times\left[-\frac{m_{V}}{m_{1}P_{1}}r_{\chi}^{1}P_{1}(2X_{A}^{-}-3)+a_{1}^{\parallel,1}P_{1}\frac{m_{1}P_{1}}{m_{V}}r_{\chi}^{V}\left(2X_{A}^{-}-\frac{17}{3}\right)\right]$$

B→ ₃ P₁ V	B →3	$P_{\scriptscriptstyle 1}$	V	
----------------------	-------------	----------------------------	---	--

SM with annihilations

 $B\rightarrow 1P_1 V$

Mode	Br	f_{L}		Mode	Br	f_L	CMV
$\overline B^0 o a_1^+ ho^-$	$23.9^{+10.5+3.2}_{-9.2-0.4}$	$(0.82^{+0.05}_{-0.13})$		$\overline B^0 o b_1^+ ho^-$	$32.1^{+16.5+12.0}_{-14.7-4.0}$	000000000000000000000000000000000000	1.6
$\overline B^0 o a_1^- ho^+$	$36.0^{+3.5+3.5}_{-4.0-0.7}$			$\overline B^0 o b_1^- ho^+$	$0.6^{+0.6+1.9}_{-0.3-0.2}$	$(0.98^{+0.00}_{-0.33})$	0.55
$\overline B^0 o a_1^0 ho^0$	$1.2^{+2.0+5.1}_{-0.7-0.3}$		0.01	$\overline B^0 o b_1^0 ho^0$		$(0.99^{+0.00}_{-0.18})$	0.002
$B^- \to a_1^0 \rho^-$	$17.8^{+10.1+3.1}_{-6.4-0.2}$		2.4	$B^- o b_1^0 ho^-$	$29.1^{+16.2+5.4}_{-10.6-5.9}$	$(0.96^{+0.01}_{-0.06})$	0.86
$B^- \to a_1^- \rho^0$	$23.2^{+3.6+4.8}_{-2.9-0.1}$	$\left(0.89^{+0.11}_{-0.18}\right)$		$B^- \rightarrow b_1^- \rho^0$	$0.9^{+1.7+2.6}_{-0.6-0.5}$	$(0.90^{+0.05}_{-0.38})$	0.36
$\overline B^0 o a_1^0 \omega$	$0.2^{+0.1+0.4}_{-0.1-0.0}$	$(0.75^{+0.11}_{-0.65})$	0.003	$\overline B^0 o b_1^0 \omega$	$0.1^{+0.2+1.6}_{-0.0-0.0}$	$(0.04^{+0.96}_{-0.00})$	0.004
$B^- \to a_1^- \omega$	$22.5^{+3.4+3.0}_{-2.7-0.7}$	$(0.88^{+0.10}_{-0.14})$	2.2	$B^- o b_1^- \omega$	$0.8^{+1.4+3.1}_{-0.5-0.3}$	$(0.91^{+0.07}_{-0.33})$	0.38
$\overline B^0 o a_1^0 \phi$	$0.002^{+0.002}_{-0.001}{}^{+0.009}_{-0.000}$	$(0.94^{+0.00}_{-0.69})$	0.0005	$\overline B^0 o b_1^0 \phi$	$0.01^{+0.01}_{-0.00}$	$(0.98^{+0.01}_{-0.33})$	0.0002
$B^- \to a_1^- \phi$	$0.01^{+0.01+0.04}_{-0.00-0.00}$	$(0.94^{+0.01}_{-0.69})$	-	$B^- o b_1^- \phi$	$0.02^{+0.02+0.03}_{-0.01-0.00}$	$(0.98^{+0.01}_{-0.33})$	0.0004
$\overline{B}^0 \to a_1^+ K^{*-}$	$10.6^{+5.7+31.7}_{-4.0-8.1}$	$(0.37^{+0.39}_{-0.29})$	0.92	$\overline{B}^0 \to b_1^+ K^{*-}$	$12.5^{+4.7}_{-3.7}^{+20.1}_{-9.0}$	$(0.82^{+0.18}_{-0.41})$	0.32
$\overline{B}^0 \to a_1^0 \overline{K}^{*0}$	$4.2^{+2.8+15.5}_{-1.9-4.2}$	$(0.23^{+0.45}_{-0.19})$	0.64	$\overline B^0 o b_1^0 \overline K^{*0}$	$6.4^{+2.4+8.8}_{-1.7-4.8}$		0.15
$B^- \to a_1^- \overline{K}^{*0}$				$B^- o b_1^- \overline{K}^{*0}$			0.18
$B^- \to a_1^0 K^{*-}$	$7.8^{+3.2+16.3}_{-2.5-4.3}$	$(0.52^{+0.41}_{-0.42})$	0.86	$B^- o b_1^0 K^{*-}$			0.12

- Br($B^0 \rightarrow b_1^+ \rho^-$)>> Br($B^0 \rightarrow b_1^- \rho^+$); BaBar: Br($B^0 \rightarrow a_1^{\pm} \rho^{\mp}$) < 61*10⁻⁶ (2006);
- ■Br(B⁰→b₁±π[∓]) = (10.9±1.5)*10⁻⁶; Br(B⁰→b₁±ρ[∓]) < 1.4*10⁻⁶?

it is expected that $b_1^+\rho^- \sim b_1^+\pi^-$ (f ρ /f π)² ~32*10⁻⁶

■ a_1K^* modes are dominated by transverse amplitudes (we use ρ_A =0.65 & ϕ_A =--53°) ²⁵

SM results

$$f_L(b_1K^*) > f_L(\rho K^*) > f_L(a_1K^*)$$

if $\rho_A = 0.65$ and $\phi_A = -53^{\circ}$ for VA modes

$$f_L(b_1K^*) > f_L(a_1K^*) > f_L(\rho K^*)$$

if neglecting the penguin annihilation for VA

Two-body decays involving a tensor meson

Light-cone distribution amplitudes for a tensor meson

chiral-even

$$\langle T(P,\lambda)|\bar{q}_{1}(y)\gamma_{\mu}q_{2}(x)|0\rangle = -if_{T}m_{T}^{2}\int_{0}^{1}du\,e^{i(uPy+\bar{u}Px)}\bigg\{P_{\mu}\frac{\epsilon_{\alpha\beta}^{(\lambda)*}z^{\alpha}z^{\beta}}{(Pz)^{2}}\bigg(\Phi_{\parallel}^{T}(u)\bigg) + \bigg(\frac{\epsilon_{\mu\alpha}^{(\lambda)*}z^{\alpha}}{Pz}\bigg)\bigg\}$$

$$- P_{\mu}\frac{\epsilon_{\beta\alpha}^{(\lambda)*}z^{\beta}z^{\alpha}}{(Pz)^{2}}\bigg)\bigg(g_{v}(u)\bigg) - \frac{1}{2}z_{\mu}\frac{\epsilon_{\alpha\beta}^{(\lambda)*}z^{\alpha}z^{\beta}}{(Pz)^{3}}m_{T}^{2}\bar{g}_{3}(u) + \mathcal{O}(z^{2})\bigg\},$$

$$\langle T(P,\lambda)|\bar{q}_{1}(y)\gamma_{\mu}\gamma_{5}q_{2}(x)|0\rangle = -if_{T}m_{T}^{2}\int_{0}^{1}du\,e^{i(uPy+\bar{u}Px)}\varepsilon_{\mu\nu\alpha\beta}z^{\nu}P^{\alpha}\epsilon_{(\lambda)}^{*\beta\delta}z_{\delta}\frac{1}{2Pz}\bigg(g_{a}(u)\bigg)$$

chiral-odd

$$\frac{1}{\langle T(P,\lambda)|\bar{q}_1(y)\sigma_{\mu\nu}q_2(x)|0\rangle} = -f_T^{\perp}m_T\int_0^1 du\,e^{i(uPy+\bar{u}Px)} \left\{ \left[\epsilon_{\mu\alpha}^{(\lambda)*}z^{\alpha}P_{\nu} - \epsilon_{\nu\alpha}^{(\lambda)*}z^{\alpha}P_{\mu} \right] \frac{1}{Pz} \Phi_{\perp}^T(u) \right\}$$

twist-2:
$$\Phi_{\parallel}$$
, Φ_{\perp}
twist-3: g_v , g_a , h_t , h_s
twist-4: g_3 , h_3

$$+ (P_{\mu}z_{\nu} - P_{\nu}z_{\mu}) \frac{m_{T}^{2} \epsilon_{\alpha\beta}^{(\lambda)*} z^{\alpha} z^{\beta}}{(Pz)^{3}} \bar{h}_{t}(u)$$

$$+ \frac{1}{2} \left[\epsilon_{\mu\alpha}^{(\lambda)*} z^{\alpha} z_{\nu} - \epsilon_{\nu\alpha}^{(\lambda)*} z^{\alpha} z_{\mu} \right] \frac{m_{T}^{2}}{(Pz)^{2}} \bar{h}_{3}(u) + \mathcal{O}(z^{2}) \right\},$$

$$\langle T(P,\lambda)|\bar{q}_1(y)q_2(x)|0\rangle \ = \ -f_T^{\perp}m_T^3\int\limits_0^1\!du\,e^{i(uPy+\bar{u}Px)}\frac{\epsilon_{\alpha\beta}^{(\lambda)*}z^{\alpha}z^{\beta}}{2Pz}(h_s(u))$$

PRD82:054019,2010, H.Y. Cheng, Y. Koike, KCY

Asymptotic form of chiral-even DAs is first studied by Braun &28 Kivel ('01)

³P₂ tensor meson

Due to G-parity, Φ_{\perp} , $h_{\parallel}^{(t)}$, $h_{\parallel}^{(p)}$, Φ_{\parallel} , $g_{\perp}^{(v)}$, $g_{\perp}^{(a)}$ are antisymmetric with the replacement u \rightarrow 1-u in SU(3) limit

$$\int_0^1 du \Phi_{\parallel}(u) = \int_0^1 du g_{\perp}^{(a)}(u) = \int_0^1 du g_{\perp}^{(v)}(u) = \int_0^1 du g_3(u) = 0$$

$$\Phi_{||,\perp}^T(u,\mu) = 6u(1-u)\sum_{\ell=0}^{\infty}a_{\ell}^{(||,\perp),T}(\mu)C_{\ell}^{3/2}(2u-1).$$

C_i^{3/2}: Gegenbauer polynomial

$$\Phi_{\parallel,\perp}(u) \simeq 6u(1-u)(2u-1) a_1^{\parallel,\perp}$$

twist-2: Φ_{\parallel} , Φ_{\perp}

twist-3: $g_{\perp}^{(v)}, g_{\perp}^{(a)}, h_{\perp}^{(t)}, h_{\parallel}^{(p)}$ related to twist-2 ones via Wandzura-Wilczek relations (neglecting 3-parton distributions)

relations (neglecting 3-parton distributions)
$$g_v^{WW}(u) = \int\limits_0^u dv \, \frac{\Phi_\parallel^T(v)}{\bar{v}} + \int\limits_u^1 dv \, \frac{\Phi_\parallel^T(v)}{v} \,,$$

$$g_a^{WW}(u) = 2\bar{u} \int\limits_0^u dv \, \frac{\Phi_\parallel^T(v)}{\bar{v}} + 2u \int\limits_u^1 dv \, \frac{\Phi_\parallel^T(v)}{v} \,,$$

$$h_t^{WW}(u) = \frac{3}{2}(2u-1) \left(\int\limits_0^u dv \, \frac{\Phi_\perp^T(v)}{\bar{v}} - \int\limits_u^1 dv \, \frac{\Phi_\perp^T(v)}{v} \right)$$

$$h_s^{WW}(u) = 3 \left(\bar{u} \int\limits_0^u dv \, \frac{\Phi_\perp^T(v)}{\bar{v}} + u \int\limits_v^1 dv \, \frac{\Phi_\perp^T(v)}{v} \right) \,.$$

$$\Phi_{\parallel,\perp}$$
ia Wandzura-Wilczek
$$\frac{\Phi_{\parallel}^{T}(v)}{v},$$

$$\int_{u}^{1} dv \frac{\Phi_{\parallel}^{T}(v)}{v},$$

$$u \int_{v}^{1} dv \frac{\Phi_{\perp}^{T}(v)}{v} \right).$$

0.8

29

Decay constants

Tensor meson cannot be produced from local V-A current owing

to
$$\epsilon_{\mu\nu}$$
p $^{\nu}$ =0 $\langle T(p,\lambda) | V_{\mu}, A_{\mu} | 0 \rangle = 0$

Can be created from local current involving covariant derivatives

$$\begin{split} \langle T(P,\lambda)|J_{\mu\nu}(0)|0\rangle &= f_T m_T^2 \epsilon_{\mu\nu}^{*(\lambda)},\\ \langle T(P,\lambda)|J_{\mu\nu\alpha}^\perp(0)|0\rangle &= -i f_T^\perp m_T (\epsilon_{\mu\alpha}^{(\lambda)*} P_\nu - \epsilon_{\nu\alpha}^{(\lambda)*} P_\mu), \end{split}$$
 with
$$J_{\mu\nu}(0) &= \frac{1}{2} \Big(\bar{q}_1(0) \gamma_\mu i \stackrel{\leftrightarrow}{D}_\nu q_2(0) + \bar{q}_1(0) \gamma_\nu i \stackrel{\leftrightarrow}{D}_\mu q_2(0) \Big)\\ J_{\mu\nu\alpha}^\perp(0) &= \bar{q}_1(0) \sigma_{\mu\nu} i \stackrel{\leftrightarrow}{D}_\alpha q_2(0), \end{split}$$
 Normalized with $a_1^\parallel = a_1^\perp = \frac{5}{3}$

Previous estimates: Aliev & Shifman ('82); Aliev, Azizi, Bashiry ('10)

Based on QCD sum rules we obtain (Cheng, Koike, KCY, arXiv:1007.3526)

Light tensor mesons [40]	$f_T \text{ (MeV)}$	f_T^{\perp} (MeV)
$f_2(1270)$	102 ± 6	117 ± 25
$f_2'(1525)$	126 ± 4	65 ± 12
$a_2(1320)$	107 ± 6	105 ± 21
$K_2^*(1430)$	118 ± 5	77 ± 14

VT modes

Data from BaBar

branching fractions (in units of 10^{-6})

Mode	\mathcal{B}	f_L	Mode	\mathcal{B}	f_L
$\mathcal{B}(B^+ \to K_2^*(1430)^+\omega)$			- 1		
$\mathcal{B}(B^+ \to K_2^*(1430)^+ \phi)$	8.4 ± 2.1	0.80 ± 0.10	$\mathcal{B}(B^0 \to K_2^*(1430)^0 \phi)$	7.5 ± 1.0	$0.901^{+0.059}_{-0.069}$

$$K_2^* \omega = 0.05 \sim 0.1$$

 $K_2^* \phi = 2 \sim 9$

Naïve factorization, Kim,Lee & Oh, PRD (2003); Munoz,Quintero, J.Phys.G (2009)

QCD factorization (without annihilation) $K_2^*\omega \sim 0.2$, $K_2^*\phi = 3$, too small

Within SM, to account for data, penguin annihilation is necessary

PRD83:034001,2011, Hai-Yang Cheng, KCY

$$\begin{split} \sqrt{2}\mathcal{A}_{B^-\to K_2^{*-}\omega}^h \; \approx \; \sqrt{2}\mathcal{A}_{\overline{B}^0\to \overline{K}_2^{*0}\omega}^h \approx & \left\{ \left[\alpha_4^{p,h} + \beta_3^{p,h}\right] \overline{X}_h^{(\overline{B}\omega,\overline{K}_2^*)} + \left[2\alpha_3^{p,h}\right] X_h^{(\overline{BK}_2^*,\omega)} \right\} \\ \mathcal{A}_{B^-\to K_2^{*-}\phi}^h \; \approx \; \mathcal{A}_{\overline{B}^0\to \overline{K}_2^{*0}\phi}^h \approx & \left[\alpha_3^{p,h} + \alpha_4^{p,h} + \left(\beta_3^{p,h} + \beta_{3,\mathrm{EW}}^{p,h}\right) X_h^{(\overline{BK}_2^*,\phi)} \right]. \end{split}$$

Ann is dominated by $(M_1, M_2) = \begin{cases} (K_2^* \phi) \\ (\omega K_2^*) \end{cases}$

To account for data, penguin annihilation is necessary

$$ho_A^{TV} \simeq 0.65, \; \phi_A^{TV} \simeq -33^\circ, \; (K_2^*\phi) \; \text{ where } M_1 = T, M_2 = V \
ho_A^{VT} \simeq 1.20, \; \rho_A^{VT} \simeq -60^\circ, \; (\omega K_2^*) \; \text{where } M_1 = V, M_2 = T \$$

Polarization puzzle in B \rightarrow K₂* ϕ

$$f_1(K_2^{*+}\omega) = 0.56\pm0.11, f_1(K_2^{*0}\omega) = 0.45\pm0.12,$$

BaBar

$$f_L(K_2^{*+}\phi) = 0.80\pm0.10, f_L(K_2^{*0}\phi) = 0.901^{+0.059}_{-0.069}$$

Why is $f_T/f_L <<1$ for $B \to K_2^* \phi$ and $f_T/f_{L^*} \sim 1$ for $B \to K_2^* \omega$? Why is that f_T behaves differently in $K_2^* \phi$ and $K^* \phi$?

In QCDF, f_L is very sensitive to the phase ϕ_A^{TV} for $B \to K_2^* \phi$, but not so sensitive to ϕ_A^{VT} for $B \to K_2^* \omega$

$$f_L(K_2^*\phi) = 0.88, 0.72, 0.48 \text{ for } \phi_A^{TV} = -30^\circ, -45^\circ, -60^\circ, f_L(K_2^*\omega) = 0.68, 0.66, 0.64 \text{ for } \phi_A^{VT} = -30^\circ, -45^\circ, -60^\circ$$

Rates & polarization fractions can be accommodated in QCDF

$$ho_A^{TV} = 0.65, \qquad \phi_A^{TV} = -33^{\circ}, \qquad
ho_A^{VT} = 1.20, \qquad \phi_A^{VT} = -60^{\circ}$$

but no dynamical explanation is offered

Fine-tuning!

New Physics due to tensor currents

$$\overline{A}_{0}^{NP} = 4i f_{\phi}^{T} m_{B}^{2} \left[\tilde{a}_{23} - \tilde{a}_{25} \right] \left[h_{2} T_{2} (m_{\phi}^{2}) - h_{3} T_{3} (m_{\phi}^{2}) \right] \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{2}{3}},$$

$$\overline{A}_{\parallel}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} - \tilde{a}_{25}) f_{2} T_{2} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\perp}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\perp}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\perp}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\parallel}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\parallel}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\parallel}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\parallel}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\parallel}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\parallel}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\parallel}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\parallel}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\parallel}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\parallel}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\parallel}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a$$

$$B \to K^* \phi$$

$$\begin{split} \overline{A}_0^{NP} &= +4i f_\phi^T m_B^2 \left[\tilde{a}_{23} - \tilde{a}_{25} \right] \left[h_2 T_2(m_\phi^2) - h_3 T_3(m_\phi^2) \right] \\ \overline{A}_{\parallel}^{NP} &= -4i \sqrt{2} f_\phi^T m_B^2 (\tilde{a}_{23} - \tilde{a}_{25}) f_2 T_2(m_\phi^2), \\ \overline{A}_{\perp}^{NP} &= -4i \sqrt{2} f_\phi^T m_B^2 (\tilde{a}_{23} + \tilde{a}_{25}) f_1 T_1(m_\phi^2), \end{split}$$

NEW-PHYSICS CORRECTIONS TO $B \to \phi K_J^*$

$$\begin{split} \overline{A}_{0}^{NP} = & 4i f_{\phi}^{T} m_{B}^{2} \left[\tilde{a}_{23} - \tilde{a}_{25} \right] \left[h_{2} T_{2}(m_{\phi}^{2}) - h_{3} T_{3}(m_{\phi}^{2}) \right] \left(\frac{p_{3}}{m_{K_{2}^{*}}} \right)^{J-1} \alpha_{J}^{(J)}, \\ \overline{A}_{\parallel}^{NP} = & -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} - \tilde{a}_{25}) f_{2} T_{2}(m_{\phi}^{2}) \left(\frac{p_{3}}{m_{K_{2}^{*}}} \right)^{J-1} \beta_{J}^{(J)}, \\ \overline{A}_{\perp}^{NP} = & -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1}(m_{\phi}^{2}) \left(\frac{p_{3}}{m_{K_{2}^{*}}} \right)^{J-1} \beta_{J}^{(J)}, \end{split}$$

Larger J

f₁ ~ unchanged

TABLE II: The Clebsch-Gordan coefficients, $\alpha_L^{(J)}$ and $\beta_T^{(J)}$, with $J=1,2,\cdots,5$.

J	1	2	3	4	5
$\alpha_L^{(J)}$	1	$\sqrt{\frac{2}{3}}$	$\sqrt{\frac{2}{5}}$	$2\sqrt{\frac{2}{35}}$	$\frac{2}{3}\sqrt{\frac{2}{7}}$
$\beta_T^{(J)}$	1	$\sqrt{rac{1}{2}}$	$\frac{2}{\sqrt{15}}$	$\frac{1}{\sqrt{7}}$	$2\sqrt{\frac{2}{105}}$

Conclusions

Possible solutions for polarization in $B \rightarrow VV decays$:

- ♦ In SM, we need large constructive annihilation corrections to the transverse amplitudes via the $O_6=-2\bar{d}(1-\gamma_5)b~\bar{s}(1+\gamma_5)d$
 - the annihilation corrections are only significant for penguin dominant processes $\phi K^*, \rho K^*, \ldots$

New physics solutions:

- 1. It is unlikely to explain data using color dipole operator and right-handed currents.
- 2. the only candidates are the tensor operators (Pure $(S \pm P)(S \pm P)$ operators are unlikely)

Further information ($b \rightarrow s \overline{s} s$) can be extracted from

$$B \to h_1(1380)K^*$$

$$B \rightarrow \phi K_2^*, \omega K_2^*$$

$$B \to \phi K_I^*$$