Pole Counting and Pole Classification

郑汉青

北京大学物理学院

海峡两岸研讨会, 2012 年5月, 重庆

Outline

Pole counting mechanism

- 有效力程程展开和共振分类
- 色散关系 T 矩阵与 CDD 极点

2 两个例子

- X(3872)
- $f_0(980)$ and $a_0(980)$

Pole counting mechanism

- 有效力程程展开和共振分类
- 色散关系 T 矩阵与 CDD 极点
- 2 两个例子
 - X(3872)
 - $f_0(980)$ and $a_0(980)$

根据已有的散射截面或者相移数据,判断粒子是基本的还是复合的一直是困扰粒子物理学家的难题。在一些特殊的情况下,还是可以建立模型无关的方法来进行判断的。例如可以根据阈附近s 波的极点个数来进行共振分类。

(日) (日) (日)

D. Morgan, Nucl. Phys. A543 (1992) 632-644

对于散射振幅总是可以写为

$$T = \frac{1}{M - ik} \tag{1}$$

共振极点对应着 M - ik 的零点, 而 M 可以在 k^2 处展开

$$M(k^{2}) = k \cot \delta = -\frac{1}{a} + \frac{1}{2} r_{eff}^{2} k^{2} + o(k^{4})$$
(2)

a 是散射长度, r_{eff} 为有效力程。当 r_{eff} 模上限为势宽 R 时, M - ik = 0 有两个解

$$k_{1,2} = \frac{i}{r_{eff}} \pm \sqrt{-\frac{1}{r_{eff}^2} + \frac{2}{ar_{eff}}}$$
 (3)

一般势散射 r_{eff} 比较小,所以当 |a| >> 2|r_{eff}| 时,只有一个解在 阈附近。

$$1/a + r_{eff}/2R^2 = 1/R$$
 (4)

-2

《曰》《圖》《臣》《臣》

故 $k = \frac{i}{R}$ 确实对应阈处的一个极点。

 可以证明对于一般非相对论情况的单道势散射, M 矩阵满 足有效势程展开

$$M = -\frac{1}{a} + \frac{1}{2}r_{eff}k^2 + o(k^4)$$
 (5)

势程 $r_{eff} \approx R$.

● 对于双道, 振幅 T 是一个2×2 的矩阵

$$\hat{T} = [\hat{M} - i\hat{k}]^{-1}$$
 (6)

$$T_{22} = [\chi_{22} - ik_2]^{-1} \tag{7}$$

可以证明, χ_{22} 也满足有效势程展开

$$\chi_{22} = \chi_{22}^{(0)} + 1/2r_{eff}^{\chi}k_2^2 + 0(k_2^4)$$
(8)

$$r_{eff}^{(\chi)} \approx R$$
 (9)

由此可知,双道势散射在第二个道阈附近也只有一个极点。

Pole counting mechanism 有效力程程展开和共振分类

• 色散关系 T 矩阵与 CDD 极点

2 两个例子

• $f_0(980)$ and $a_0(980)$

色散关系的 N/D 方法

$$T(\nu) = N(\nu)/D(\nu)$$
(10)

 $N(\nu)$ 代表左手割线贡献, $D(\nu)$ 代表右手割线的贡献。

$$M(\nu) = T^{-1}(\nu) - i\rho(\nu)$$
 (11)

《曰》《圖》《臣》《臣》

3

其中 $\nu = \frac{k^2}{m^2}, \rho(\nu) = [\nu/(\nu+1)]^{1/2}.$

从分波色散关系出发,如果只有t道和u道的粒子交换,没有额外的共振和束缚态,解 N/D 方程也会出现类似势散射的有效势 程展开

$$M(\nu) = \rho \cot \delta = M^{(0)} + \frac{1}{2} r_{eff} m\nu + 0(\nu^2)$$
(12)

3

其中 $r_{eff} \approx 2\sqrt{2}/\mu, \mu$ 是交换粒子的质量。

如果有新的粒子耦合到散射系统中,一般会出现 CDD 极 点。CDD 极点用两个参数来描述:极点位置和耦合常数 g。这样 原来的 S 矩阵会发生改变, *M*(ν) 也会发生变化

$$M(\nu) = \frac{\nu_p - \nu}{g^2} + rescattering \quad corrections \tag{13}$$

当 g 很小时,在阈附近就会有两个极点 $\sqrt{\nu} \approx \pm \sqrt{\nu_p}$.

 Pole counting mechanism
 有效力程程展开和共振分类

 两个例子
 色散关系 T 矩阵与 CDD 极点

- 对于双道情况,如果只有t道和u道,也会跟势散射双道情况一样只有一个极点在第二个阈附近。
- 当有 CDD 极点耦合进来时会增加三个参数来描述

$$D_{ij} = (s_P - s)\delta_{ij} - \frac{s - s_P}{\pi} \int_{s_i}^{\infty} \frac{ds'\rho_i(s')N_{ij}(s')}{(s' - s_P)(s' - s)}$$
(14)

$$N_{ij} = g_i g_j + \frac{s - s_p}{\pi} \sum_k \int_{-\infty}^{s_L} \frac{ds' Im T_{ik}^L(s') D_{kj}(s')}{(s' - s_P)(s' - s)}$$
(15)

其中 g_1, g_2 分别是 CDD 极点与道 1、2 的耦合参数, s_p 是 CDD 极点位置。由 $M = T^{-1} - i\rho = D/N - i\rho$ 可知,在第 二个阈附近有两个极点。

Pole counting mechanism 有效力程程展开和共振分类

• 色散关系 T 矩阵与 CDD 极点

Pole counting mechanism X(3872) 两个例子 f₀(980) and a₀(9

The experimental discovery of X(3872)

Belle Collaboration, Phys.Rev.Lett.91:262001,2003. Observation of a narrow charmonium-like state in the $B^{\pm} \rightarrow K^{\pm}X$, $X \rightarrow J/\Psi \pi^{+}\pi^{-}$, $M_{X} = 3872.0 \pm 0.6(\text{stat}) \pm 0.5(\text{syst})$ MeV, very near the $M_{D} + M_{D^{*}}$ mass threshold. $\Gamma < 2.3$ MeV. $\pi\pi$ produced from ρ decay.

Figure: $M_{J/\Psi\pi^{+}\pi^{-}}$ invariant mass spectrum

Pole counting mechanism 两个例子

(3872) (980) and *a*₀(980)

In addition, BABAR (Phys. Rev. D77: 011102,2008) also gives new measurement on $X\to D^0\bar{D}^{*0}$

Figure: $M_{D^0\bar{D}^0\pi^0}$ invariant mass spectrum

Pole counting mechanism 两个例子

X(3872) fo(980) and *a*o(980)

Theoretical considerations

- <u>D⁰D⁰* molecular bound state</u>: N.A. Tornqvist, Phys. Lett. B 590, 209 (2004); F. Close and P. Page, Phys. Lett. B 578, 119 (2004); C.Y. Wong, Phys. Rev. C 69, 055202 (2004); E. Braaten and M. Kusunoki Phys. Rev. D 69, 074005 (2004); M.B. Voloshin, Phys. Lett. B 579, 316 (2004); E.S. Swanson, Phys. Lett. B 588, 189 (2004); 598, 197 (2004). (large production rate of X(3872))
- Normal cc̄ state: C. Meng, Y.J. Gao and K.T. Chao, arXiv: hep-ph/0506222. M. Suzuki, Phys. Rev. D 72, 114013 (2005). (mass so close to D⁰D̄^{*0} threshold, accident?)
- Dynamical complexity: couple channel effects, cusp, etc. (D.V. Bugg, e-Print: arXiv:0802.0934 [hep-ph])
- Virtual state: C. Hanhart, Yu. S. Kalashnikova, A. E. Kudryavtsev and A. V. Nefediev, Phys. Rev. D76, 034007 (2007).

Pole counting mechanism 两个例子 **X(3872)** f₀(980) and *a*₀(980)

Bound state, virtual state, resonances

Figure: Typical behavior of pole trajectories w.r.t. coupling strength, calculated in a square well potential.

One needs to look deeper into the pole structures of the scattering amplitude involving X(3872).

- For a dynamical molecule of $D^0 \overline{D}^{*0}$, there is only one pole near the threshold.
- Two nearby poles imply that it is a cc̄ state near the threshold.

D. Morgan's pole counting mechanism!

Previous fits to the line shape of $B^+ \rightarrow XK^+$ in the $J/\Psi \pi^+ \pi^$ and $D^0 \bar{D}^0 \pi^0 / D^0 \bar{D}^{*0}$ channel give an one-pole structure (bound state or virtual bound state).

Energy Resolution has to be taken into account

$$Br(E) = \frac{1}{\sqrt{2\pi}\sigma(E)} \int dE_x Br(E_X) e^{-\frac{(E_x - E)^2}{2\sigma(E)^2}}.$$
 (16)

In general, the energy resolution parameter σ is a function of E. For $J/\Psi \pi^+\pi^-$ channel at Belle:

$$\sigma(E) = 3MeV . \tag{17}$$

For $D^{0*}D^0$ at Belle:

$$\sigma(E) \simeq 0.176 \sqrt{E - M_{D^{0*}D^0}}$$
 (18)

(S. Olsen, private communications.) Refit to new data! counting mechanism 西人例子 **((3872)** 5(980) and *a*c(980

Fit to $X \rightarrow D^{*0}\overline{D}^0$: B. Aubert et al. (BaBar Collaboration), Phys. Rev. D77: 011102,2008.

Figure:

Pole counting mechanism 两个例子 **((3872)** 5(980) and *a*n(980

Fit to $X \rightarrow D^0 \overline{D}{}^0 \pi^0$: G. Gokhroo et al. (Belle Collaboration), Phys. Rev. Lett. 97(2006)162002.

Figure:

_ ▶ <

ole counting mechanism 两个例子 **((3872)** n(980) and *a*n(980

Fit to $X \rightarrow J/\Psi \pi^+ \pi^-$: B. Aubert et al. (BaBar Collaboration), Phys. Rev. **D73**(2006)011101.

Figure:

____>

Pole counting mechanism 两个例子 **X(3872)** M(980) and *a*0(980)

Fit to $X \rightarrow J/\Psi \pi^+ \pi^-$: Belle Collaboration, arXive:0809.1224 [hep-ex]

Figure:

- □ ▶ - 4 □ =

With one group of un-binmed data set, we use a mixed minimization procedure:

$$\chi_{eff}^2 \equiv -2\sum_i \log \mathcal{L}_i + \sum_j \chi_j^2 + \chi_R^2 , \qquad (19)$$

where i = II, IV; j = I, III. The ratio R has to be put into the fitting program as a constraint. We set $R = \frac{Br(X \rightarrow J/\Psi\rho)}{Br(X \rightarrow J/\Psi\omega)}$ is set to 1. (variations tested!)

Flatté formalism

Essentially the same as Hanhardt et al., except the modification in the Breit-Wigner propagator,

$$D(E) = E - E_f + \frac{i}{2}(g_1k_1 + g_2k_2 + \Gamma(E) + \Gamma_c), \quad (20)$$

Here subscript 1: $D^0 \overline{D}^{0*}$ channel; 2: $D^+ D^{*-}$ channel; $\Gamma(E)$ for $J/\Psi\rho$, $J/\Psi\omega$; Γ_c : all other channels. For more details, we refer to the papers.

Numerical Results

 $\mathcal{B} = Br(B \to KX)$ parameters \sim a few times 10^{-4} ! $\mathcal B$ has to be confined within reasonably small value!

$\mathcal{B} = 3 imes 10^{-4}$	$g_X(GeV)$	$E_f(MeV)$	$f_ ho imes 10^3$	$f_\omega imes 10^2$	Γ _c
$\chi^{2} = 4090$	4.20	-6.89	1.46	1.01	2.02 ± 1.6
$\chi^{2} = 4092$	5.57	-10.3	0.74	0.53	—

Table: Pole positions: $E_x^{III} = M - i\Gamma/2 = -4.82 - 1.58i$ MeV, $E_{x}^{II} = M - i\Gamma/2 = -0.20 - 0.40i$ MeV (with Γ_{c}); $E_{x}^{III} = M - i\Gamma/2 = -7.66 - 0.12i \text{MeV},$ $E_x^{II} = M - i\Gamma/2 = -0.02 - 0.01 i \text{MeV} (w/o \Gamma_c)$

Third sheet pole runs away when \mathcal{B} large!

Conclusions:

- First evidence in support of the existence of two nearby poles, if $Br(B \rightarrow KX)$ reasonably small.
- Above qualitative picture stable against variations of fit scheme.
- Strong indication that $X(3872) = c\bar{c}$ confining states heavily renormalized by $D^0\bar{D}^{*0}$ continuum.

Results supported by Kalashnikova, Nefediev, Phys. Rev. D80: 074004, 2009, in a different approach, and by other groups.

O. Zhang, C. Meng, HQZ, Phys.Lett. B680 (2009) 453-458; AIP Conf.Proc. 1257 (2010) 457.

Pole counting mechanism 有效力程程展开和共振分类

• 色散关系 T 矩阵与 CDD 极点

2 两个例子

- X(3872)
- $f_0(980)$ and $a_0(980)$

Pole counting mechanism X(3872) 两个例子 场(980) and a₀(980)

SU(3) chiral perturbative amplitudes

L. Y. Dai, X.G. Wang, H.Q. Zheng, arXiv:1108.1451 [hep-ph] As an exercise, we have recalculated all the 1–loop amplitudes $\pi\pi \to \pi\pi, \pi\pi \to \bar{K}K, \bar{K}K \to \bar{K}K, K\pi \to K\eta$ and $\pi\eta \to \bar{K}K$ and confirm previous results found in the literature.

Figure: Feynman diagrams of $\mathcal{O}(p^4)$

Pole counting mechanism X(3872) 两个例子 f₀(980) and a₀(980)

Partial wave expansion and matrix Padé unitarization

In two-channel case,

$$\begin{split} &\operatorname{Im} T_{11} = T_{11} \rho_1 T_{11}^* \theta(s - 4m_\pi^2) + T_{12} \rho_2 T_{21}^* \theta(s - 4m_K^2) , \\ &\operatorname{Im} T_{12} = T_{11} \rho_1 T_{12}^* \theta(s - 4m_\pi^2) + T_{12} \rho_2 T_{22}^* \theta(s - 4m_K^2) , \\ &\operatorname{Im} T_{22} = T_{21} \rho_1 T_{12}^* \theta(s - 4m_\pi^2) + T_{22} \rho_2 T_{22}^* \theta(s - 4m_K^2) , \end{split}$$

The [1,1] matrix Padé approximant reads,

$$T = T^{(2)} \cdot [T^{(2)} - T^{(4)}]^{-1} \cdot T^{(2)} .$$
(22)

However, it will cause the difficulty that the left hand cut $(-\infty, 4m_K^2 - 4m_\pi^2]$ will appear not only in T_{22} , but also in the other two amplitudes as well. Hence, Eq. (21) is satisfied exactly only above $\bar{K}K$ threshold, although the deviation from unitarity may be numerically small in some cases.

Pole counting mechanism X(3872) 两个例子 f₀(980) and a₀(980)

Fit results

Figure: From Fit I: a) I = 0 S wave $\pi\pi$ phase shift; b) inelasticity; c) $\delta_{\pi\kappa}$; d) I,J=1,1 channel $\pi\pi$ phase shift.

Pole counting mechanism X(3872) 两个例子 fg(980) ar

 $f_0(980)$ and $a_0(980)$

Pole counting: $f_0(980)$ and $a_0(980)$

L.Y Dai, X.G. Wang, H.Q. Zheng , arXiv:1108.1451 [hep-ph]

Resonance	II		IV
σ	0.457 <i>- i</i> 0.242		
$f_0(980)$	0.974 <i>- i</i> 0.025		
$a_0(980)$		0.640 <i>- i</i> 0.002	1.131 <i>- i</i> 0.079
ho(770)	0.740 <i>- i</i> 0.069	0.782 <i>— i</i> 0.056	
(I, J) = (2, 0)	$0.045 m_{\pi}^2$		
<i>κ</i> (800)	0.673 - <i>i</i> 0.254		
K*(892)	0.895 <i>— i</i> 0.026	0.921 <i>- i</i> 0.021	

Table: Resonance pole positions on \sqrt{s} plane in unit of GeV, and virtual pole position on s plane.

Pole counting mechanism X(3872) 两个例子 fb(980) and ab(980)

N_c trajectories

Figure: $\rho(770)$ and $K^*(892)$

Standard couple channel Breit-Wigner resonances!

Figure: $f_0(600)$ and $\kappa(800)$

Single channel resonances.

Conclusions: $a_0(980)$ more likely a Breit–Wigner resonance $f_0(980)$ more like a molecular state.

Figure: $f_0(980)$ and $a_0(980)$

Pole counting mechanism X(3872) 两个例子 fg(980) and ag(980)

Thank you patience!

@▶ 《注》 《注

æ