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AMS is an International Collaboration
16 Countries, 60 Institutes and 600 Physicists, 17 years
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To install AMS on the ISS'we have mlnlaturlzed the CERN Detectors to fit

into the space shuttle Thisthas -been the main technical challenge:
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AMS mated with the Payload Attach System simulator (A) during Space
Station interface verification test
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AMS: A TeV precision, multipurpose particle physics
TRD spectrometer in space.

ldentify e+, e- Particles and nuclei are defined by their
charge (Z) and energy (E ~ P)

Silicon Tracker
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Z, P are measured independently by
the Tracker, RICH, TOF and ECAL



1. Stable: no torque

2. Safety : no field leak out of the magnet Th e Mag net

3. Low weight: no returniron

W The detailed 3D field map (120k locations)
was measured on 25-27 May 2010
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The Permanent Magnet was manuractured at IEE, CAS



x - For AMS-01, 10 Magnets were made:

*

Seven magnets to understand
the field calculation, leakage and dipole moment

Three full-size magnets for
1) space qualification, 2) destructive testing and 3) flight

Acceleration test to 17.7 G in Beijing



1.03 TeV electron

Run/Event 1315754945/ 173049 GMT Time 2011-254.15:31:15

AMS Event Display
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50,000 fibers, ¢ =1mm, distributed uniformly inside 1,200 Ib of lead

which provides a precision, 3-dimensional, 17X, measurement
of the directions and energies of light rays and electrons up to 1 TeV




Electron Shower Shape in ECAL
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Physics of AMS: Search for
AMS on 155 Antimatter Universe

The Universe began with the Big Bang.
After the Big Bang there were
equal amounts of matter and
antimatter.

It is known that the Milky Way and the™
galaxies around it are made of matter
i -Helium? predominantly.

anti-carbon?  Where are the primordial antimatter in
the Universe?



Experimental work on Antimatter in the Universe

Direct Search for
search Baryogenesis
o —"— N
New CP Proton decay
BELLE Super K
BaBar (T, > 6.6 * 103 years )

(sin 2B=0.672%0.023
consistent with SM)

FNAL KTeV

(Re(e’] €) = (19.2+2.1)*104)

CERN NA-48
CDF, DO

!

AMS LHC-b
Increase in sensitivity: x 103 - 10° ATLAS
Increase in energy to ~TeV CMS

yO6K299a



The physics of AMS include:
The Origin of Dark Matter

~ 90% of Matter in the Universe is not visible and is called Dark Matter

A Galaxy as seen by telescope If we could see Dark Matter in
the Galaxy




The leading candidate for Dark Matter is a SUSY neutralino (¥°)

Collisions of x° will produce excess in the spectra of e* different from known cosmic ray collisions

O AMS-01
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Measurement of Separate Cosmic-Ray Electron and Positron
Spectra with the Fermi Large Area Telescope
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Phys. Rev. Lett. 108, 011103 (2012)

FIG. 5:

Positron fraction measured by the Fermi LAT and
by other experiments [7, 14, 16]. The Fermi statistical uncer-
tainty is shown with error bars and the total (statistical plus
systematic uncertainty) is shown as a shaded band.



Science | NOW/| uve 1o THE MinuTE NEWS FROM SCIENCE

Cosmic Antimatter Excess Confirmed
by Geoffrey Koch on 22 November 2011, 4:13 PM

The search for Turner's "smoking gun" is now counting on
another detector, the $2.2 billion internationally funded
Alpha Magnetic Spectrometer (AMS-02), which was carried
to the International Space Station in May. AMS-02 includes a
powerful magnet to parse cosmic rays and should be able to
probe for the positron excess, and the sudden drop-off, at
significantly higher energies than the Fermi telescope can
(;anage. "AMS-02 should be able to make a final statement)

on this," Funk says. "This is something we are all eagerly
_awaiting."



http://news.sciencemag.org/sciencenow/

Detection of High Mass Dark Matter from ISS
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205 GeV positron
AMS Event Display  Run/Event 1311119461 / 175264 GMT Time 2011-201.00:04:26
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424 GeV positron

front view
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Science Example: Strange Quark Matter — “Strangelets”

All the known material on Earth is made out of u and d quarks

u
uuuuu Diamond
u C u
g Y vu

Is there material in the universe made up of u, d, & s quarks?

S g u
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ut 7S us
u S  Strangelet
u S u
S
diis v u

This can be answered definitively by AMS.

u,d,s,c,b,t

Jack Sandweiss, Yale



Strangelets
E. Witten, Phys. Rev. D,272-285 (1984)

All the known material on Earth is made out of u and d quarks.
Is there material in the universe made up of u, d, & s quarks? Z/IA~0.1

Candidate observed with AMS-01 5 June 1998 11:13:16 UTC
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Physics of AMS: Nuclear Abundances Measurements

104
10"
102
10
10®
1011 _

For energies from 100 MeV to 1 TeV
with 1% accuracy over the 11-year solar cycle.

These spectra will provide experimental data that go into calculating the

background in the Search for Dark Matter,
i.e., p+C —et, ...



AMS Data on ISS from Cosmic Nuclei

TOF
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RICH: 21,760 Pulse Heights (low and high gain)

Onboard processing: 28 computers
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AMS data: Nuclei in the TeV range
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ldentifying y Sources with AMS
Example: Pulsars in the Milky Way

Neutron star sending radiation in a periodic way.

Currently measured to energies of ~ GeV
S ¢ Wwith precision of a millisec.

AMS: energy spectrum up to 1 TeV and pulsar
periods measured with psec precision

A factor of 1,000 improvement in Energy and Time

Unique Features:
17 X,, 3D ECAL,

Measure Y to 1 TeV,

Pulsardll crabe (HST)




Physics of AMS: Measuring photons

Unique Features: 17 X,, 3D ECAL, measure y to 1 TeV, time resolution of 1usec

120 GeV photon,

. direction
‘«——reconstructed with .
- 3D shower
sampling
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AMS is capable of measuring polarizations of high energy photons

Primary
Bremsstrahlung positron
vertex
Conversion

vertex T Photon TOF

A Z / |
/]
®B /'f I|| Tracker
> Y ||
|
i
|
Secondary | Secondary
positron '|||e|ectrnn TOF
AMS-01 Collaboration Left Middle ng ht
Phys.Lett.B646:145-154,2007

Figure 1: Schematic view of a converted bremsstrahlung event cansed by a positron going top-down.



Possible Experimental Determination of Whether
the Neutral Meson is Scalar or Pseudoscalar

C. N. YancG

Inststute for Advanced Study, Princelon, New Jersey
January 16, 1950

EUTRAL mesons with a mass of ~300 Mev which decay

into two photons have been reported.! It can be proved*?

on general grounds of rotation-inversion invariance that a particle
which dematerializes into two photons cannot have spin 1.

Detection of Gamma-Ray Polarization by
Pair Production*
. C. Wick

Yadialion Laboratory, University of California, Berkeley, California
December 12, 1950

T has been pointed out by Yang,! that pair production may

provide a method for detecting the polarization of «-rays in
the high energy range: hw>>mc® (m being the electron mass)
where the usual Compton recoil method becomes insensitive. The
idea is to utilize the azimuthal dependence of the pair production
cross section de, the azimuth ¢ being measured around the
direction k of the incident quantum and from the plane con-
taining k and the electric polarization vector € of the quantum.
Actually, of course, one must consider two azimuths ¢, and ¢_
for the positive and negative electron respectively. Berlin and



AMS-02 Electronics

|
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____ Tracker ___ | ‘
~ 7 Gbit/sec ============== = “ 10 Mbit/sec to Earth
F{anc—
moc @

The level of redundancy is shown in parenthesis.

AMS electronics are based on accelerator physics technologies.
They are ~ 10 times faster than commercial space electronics.

They were manufactured at the
Chung Shan Institute of Science and Technology (CSIST)
under the leadership of General Jinchi Hao
with the support of the Director Generals of CSIST



JIM-CAN

Total 650 micro-processors
48 crates




General Hao Jinchi and the AMS CSIST Electronics experts



h \s‘
The completed flight electronics
650 microprocessors, 300,000 channels




Orbital DAQ parameters

Acqwsmon rate [Hz] Tlme at Iocatlon [S]
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Particle rates vary from
200 to 2000 Hz per orbit

On average:
DAQ efficiency 85%
DAQ rate ~7/00Hz




AMS collected over 8 billion events
for the first 6 months

Billions events transferred D
Billions events reconstructed I
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Events/sec/GV

Data from AMS on ISS
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Events/sec/GV

Data from AMS on ISS
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Events/sec/GV

AMS data: He rate and Solar Flare
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FMP/QMP

3TTCS Boxes

Front

Radiat
or side




There are 9 planes with 200,000 channels aligned to 3 microns
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Inner Tracker Temperatures

Inner tracker temperature is kept
under control by the TTCS

TTCS tests

temperature (C)
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Manufacturing of the main radiator panel -



Test of the Tracker Radiator Panel




STS-134 launch May 16, 2011 @ 08:56 AM

-




S

May 19: AMS installation completed at 5:15 CDT, start taking data 9:35 CDT
During the first week, we collected 100 million cosmic rays
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= » -,.\, - _____peratlons

TDRS Satellites

K
. High Rate (down):
Events <10Mbit/s>

S-Band

Low Rate (up & down):
Commanding: 1 Kbit/s
Monitoring: 30 Kbit/s

~ White Sands Ground
AMS Payload Operations Control and Terminal, NM
Science Operations Centers

AMS C ter
(POCC, SOC) at CERN OMPULers

at MSFC, AL



We are collaborating with MIT anes
Tracker and ECAL a*“’g
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Undergraduate students from China work with our
groups at CERN for their senior theses.
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AMS Control Centers (POCC)

(June 2012)

JSC, TX

Back up POCC

NASA
channels

\4

CERN, Geneva
AMS GSC Center s AMS POCC




QoS Link
(10+2.5 Gbit)

StarLight

Fiber to CSIST

Academia Sinica

CSIST

Opening Ceremony

Asia POCC Network
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ASGC Computing Center

Executive Officer S.-C. Lee

Tier-2 Centers

Cooling Power : CPU Power 7
Summer 1:1.4 i P

Winter 1:2 CIOTTITTTH
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ASGC is a Tier-1 Center of World-Wide Grid

e Total Capacity ” (o |, _.
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53 §4551 j33522



PanDA: Preduction and We adopt grid software developed by
Distributed Analysis System BNL and CERN for ATLAS to support

‘ Job ] PanDA | AMS users using resources in Taiwan.
Scheduling PanDA Brokerage Server
Data | Monitoring System Data
Scheduling | Management
https Hps System

Production Pro.ccl, l::'on
Managers I m[ Logging

2 Submltter System

A S
\
define \\
|
|
Task/Job I
Repository SiteMover |
i |
(Production DB) > |
Storage I
System I
|
|
|
Squid £ [
Cache | cvmFs |
N y4 .
Condor-G Repository :
\ Pilot Scheduler /I
\\ (autopyfactory) y;
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Thermal Control is the most
challenging task in the operation of AMS

The thermal environment on ISS is constantly changing due to:
— Solar Beta Angle (B)
— Position of the ISS Radiators and Solar Arrays
— ISS Attitude

Over 1,100 temperature sensors are monitored around the clock in the
AMS POCC to assure components stay within thermal limits.

AMS temperatures are in a constant transient.

Several subsystems (e.g. TRD Gas, TOF, TTCS) have operated near
their limits, requiring AMS operational workarounds or ISS actions
to avoid damage.




Temperatures on LUSS
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One of 20 Layers

Example: TRD Alignment

| /

Fleece—Radiator

LRP 375 BK (ATLAS)

Chosen configuration for 60 cm height:
20 Layers each existing of:
« 22 mm fibre fleece
« @6 mm straw tubes
filled with Xe/CO, 80%/20%

12 layers in the bending plane
2 X 4 layers in the non-bending plane
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—— ]
f
-
i
i

large acceptance: 0.5m2sr



—— T —
1

Completion of the TRD required a 10 year full-time
effort




Fired TRD Tube

TrTrack Extrapolation

Extrapolate inner tracker tracks to TRD. Minimize
the impact parameter to determine the position
of a TRD module relative to the inner tracker.



TRD Alignment
-- long term
variation
3 hr per point
All planes vary in
the same way

indicating that TRD
is a rigid body.

Zhili Weng, private
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A X [mm]

TRD Alignment b #m
-- short tem |
variation
2 min per point
Shows the orbital |
variation. a4 e
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Alignment affect
gain calibration
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TRD Gain Calibration During Refill
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Conclusion

AMS Is working well.
All subdetectors are performing as expected.

Electronics and thermal systems built in Taiwan
have been doing outstanding jobs.

We are still optimizing the performance of AMS.

We expect exciting results to be unveiled soon.



Discoveries in Physics

Facility

Original purpose,
Expert Opinion

Discovery with
Precision Instrument

30 GeV Proton Accelerator (1960’s)
CERN

Nuclear force

Neutral Currents ->Z, W

30 GeV Proton Accelerator (1960’s)
Brookhaven

Nuclear force

2 types of neutrinos
Break down of time reversal symmetry
New form of matter

400 GeV Proton Accelerator (1970’s)
FNAL

Neutrino physics

5th and 6th types of quark

Electron Positron Collider (197¢:)

Properties of

Quark inside protons
4th family of quarks

SLAC Spear quantum electricity 3rd kind of electrons
Electron Positron Collider (19g¢7s) 6th kind of quark Gluon
PETRA

Large Underground Cave (2000)
Super Kamiokande

Proton life time

Neutrino has mass

Hubble Space (1990’s) Galactic Curvature of the universe,
Telescope survey dark energy
AMS on ISS Dark Matter, Antimatter,... ?

Exploring a new territory with a precision instrument is the key to discovery.







% Solar Beta Angle (f3)
Orbital (@)
Inclination o, The angle between the ISS Orbital
51.6° S’L Plane and the Solar Vector
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Solar Beta Angle

B changes constantly, ~¥4.5°/day, from -75° to + 75°,

due to the precession of the ISS’s orbit
and the rotation of the Earth about the Sun




Evolution of the beta angle through 2012, with dates of extreme values
At large positive values, the port side of AMS is hot and the starboard side cold.
Vice-versa for large negative beta angles
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Lower Time of Flight Phototube temperatures during entire time of AMS on ISS
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Highest LTOF PM temperatures increased in successive low beta periods due to increasingly
extreme beta angles, changing solar constant (earth is closest to sun on Jan. 4) and five day period
of no eclipse in January
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Completion of installation of the AMS
on the Space Station




Thermal variables:
e ISS Radiator positions

» |SS attitude changes (primarily for visiting
vehicles)

/

STBD Main Radiator move
from -8° to +25°

TRD Pump temperature

4 Sep



Additional thermal variables:

Shading from adjacent Attached Payload
ELC)

(Express Logistics Carrier —



http://en.wikipedia.org/wiki/File:AMS-02_Logo.png
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| AMS 02 —Thermal Control v
System Design -

IHEP participated in the design
and manufacturing of ECAL

China in AMS

X 1 H
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& , J,- = - ' uRIvEEnTE BE Graive
Trm——— Feacker T hermal Contral 5y<tem

Evaporator of

| TTCS: SYSU
participated in
the design,
prototyping and

Tanks, Cryostat, Valve Boxes, Simulator and Controller of CGSE
are being manufactured




To distinguish matter from anti-matter, a
magnet is needed.
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AMS-02

(3yrs)
with SC Magnet
8 layers of Silicon

e ———

—~———

AMS-02

with Permanent Magnet
9 layers of Silicon

Layers 1 and 9 are far away from
the magnet to extend the lever arm.



Rigidity resolution
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The most exciting objective of AMS Is to probe
the unknown; to search for phenomena which
exist In nature that we have not yet imagined
nor had the tools to discover.

Examples of our early work include:
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Milan-Thermal

Scientists from 15 countries come
to Taiwan every 3 months for a
Technical Exchange Meeting on electronics

Scientists fromTaiwan go to U.S. and Europe
to work with AMS partners.
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“#@e They also come to work with
o lOcal scientists to test and
qualify every piece of
electronics equipment
produced.
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Milan-Power



Planned Asia POCC -- in Preparation at CSIST
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POCC at CERN in control of AMS since 19 June 2011
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AMS Science Centers |
were established at all the
participating universities
In China. They contribute
greatly to the computing
needs of AMS.




