Identify charged Higgs boson in $W^{\pm}H^{\mp}$ associated production at the LHC

鲍守山

山东大学物理学院

2012 - 5 重庆

H.L.Li, S.Y.Li, Z.G.Si, Y.L.Wu, Phys. Rev. D83:075006, D85 075005

鲍守山 (山东大学)

2012-5 1 / 10

5900

・ロト ・ 日 ・ ・ 日 ・ ・

200

(日) (四) (王) (王) (王)

NP With New Charged Bosons

- H^{\pm} : New Doublet, THDM(MSSM). SM has no Charged Scalar
- $W^{\prime\pm}$: New Gauge Interaction, ED, LR

LHC–Searching Higgs ISM and NP BSM

 $pp \rightarrow WX$ is interesting to search Higgs ISM and NP BSM

- In addition to the Golden Channels, the $pp \to W^{\mp}H(2b_i)$ is another promising discovery channel for a SM Higgs particle with mass below about 135GeV.
- In addition to $gb \to H^-t$ and $gg \to H^-tb$, another interesting channel is to produce the H^{\pm} in association with W bosons, and the leptonic decays of the W-boson can serve as a trigger for the H^{\pm} boson search.

San

イロト イヨト イヨト イヨト

At hadron colliders, the dominant mechanisms for $W^{\pm}H^{\mp}$ associated production are $b\bar{b}$ annihilation at tree level and gluon-gluon fusion at one-loop level.

 $b\bar{b}$ annihilation strongly depends on y_b ;

鲍守山 ((山)	东大	、学)	
-------	-----	----	-----	--

Figure: $(y_t, y_b) = A: 0.2, 0.5; B: 0.1, 0.8; C: 0.01, 1.0$

Result

- $\sigma(b\bar{b})/\sigma(gg) \sim 10^2$
- smaller y_b , larger y_t : $b\bar{b}$ smaller, gg larger;
- In Type II or MSSM, the $b\bar{b}$ is dominant for large tan β .
- The Cross-section In MSSM is smaller by 2 order.

Result

- $\sigma(b\bar{b})/\sigma(gg)\sim 10^2$
- smaller y_b , larger y_t : $b\bar{b}$ smaller, gg larger;
- In Type II or MSSM, the $b\bar{b}$ is dominant for large $\tan \beta$.
- The Cross-section In MSSM is smaller by 2 order.

鲍守山 (山东大学)

Charged Bosons

$pp \to W^{\mp}H^{\pm}$

- $H^{\pm} \to cs, W + 2j.$
- $H^{\pm} \to \tau \nu;$
- $H^{\pm} \rightarrow tb, b\bar{b}jj$
- $M_{H^{\pm}} < m_t + m_b;$
- small $\tan \beta$ in MSSM;
- ${W'}^{\pm} \to cs$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$pp \to W^{\mp}H^{\pm}$

- $H^{\pm} \rightarrow cs, W + 2j.$
- $H^{\pm} \rightarrow \tau \nu;$
- $H^{\pm} \rightarrow tb, \, b\bar{b}jj$
- Larger $\tan \beta$, especially for $M_{H^{\pm}} < m_t + m_b$;
- M_{H[±]} from p_T distribution of τ-jet;
 W'[±] → τν

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

$pp \to W^{\mp} H^{\pm}$

- $H^{\pm} \rightarrow cs, W + 2j.$
- $H^{\pm} \rightarrow \tau \nu;$
- $H^{\pm} \rightarrow tb, \, b\bar{b}jj$
- $M_{H^{\pm}} > m_t + m_b;$
- $\bullet \ t \to b W(l\nu)$
- ${W'}^{\pm} \to tb$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $pp \to W^{\mp}H^{\pm} \to l + E_T + b\bar{b}jj$

Bacground		$m_{H^{\pm}}$	
$tar{t}$	5.38×10^5	300	105
$t\bar{t}W$	5.22×10^2	400	49.7
$t\bar{t}Z$	6.85×10^2	500	25.7
WZjj	3.90×10^4	600	14.1
WWjj	6.88×10^4	800	4.90
W j j j j	2.55×10^7	1000	1.93

Table: the cross section of the SM backgrounds, unit of fb.

 $pp \rightarrow W^{\mp}H^{\pm} \rightarrow l + E_T + bbjj$

鲍守山 (山东大学)

- 32 2012-57 / 10

5900

 $pp \to W^{\mp}H^{\pm} \to l + E_T + b\bar{b}jj$

Bacground		$m_{H^{\pm}}$	
$tar{t}$	$5.38 imes 10^5$	300	105
$t\bar{t}W$	5.22×10^2	400	49.7
$t\bar{t}Z$	6.85×10^2	500	25.7
WZjj	3.90×10^4	600	14.1
WWjj	6.88×10^4	800	4.90
W j j j j	2.55×10^7	1000	1.93

Table: the cross section of the SM backgrounds, unit of fb.

 $|M_{jjj} - m_t| \le 20 GeV;$

鲍守山 (山东大学)

Charged Bosons

2012-5 7 / 10

< CDF P

 $pp \to W^{\mp}H^{\pm} \to \bar{l} + E_T + b\bar{b}jj$

Bacground		$m_{H^{\pm}}$	
$t \overline{t}$	5.38×10^5	300	105
$t\bar{t}W$	5.22×10^2	400	49.7
$t\bar{t}Z$	6.85×10^2	500	25.7
WZjj	3.90×10^4	600	14.1
WWjj	6.88×10^4	800	4.90
W j j j j	2.55×10^7	1000	1.93

Table: the cross section of the SM backgrounds, unit of fb.

$$pp \to W^{\mp}H^{\pm} \to l + E_T + b \bar{b}jj$$

 $|M_{jjj} - m_t| \le 20 GeV$; b-taggering;

鲍守山 (山东大学)

2012-5 7 / 10

< C0P P

 $pp \to W^{\mp}H^{\pm} \to l + E_T + b\bar{b}jj$

Bacground		$m_{H^{\pm}}$	
$t ar{t}$	5.38×10^5	300	105
$t\bar{t}W$	5.22×10^2	400	49.7
$t\bar{t}Z$	6.85×10^2	500	25.7
WZjj	3.90×10^4	600	14.1
WWjj	6.88×10^4	800	4.90
W j j j j	2.55×10^7	1000	1.93

Table: the cross section of the SM backgrounds, unit of fb.

$$pp \to W^{\mp}H^{\pm} \to l + E_T + \left| b \bar{b}jj \right|$$

 $|M_{jjj} - m_t| \le 20 GeV$; b-taggering; $|M_{jjjj} - m_{H^{\pm}}| \le 30 GeV$;

鲍守山 (山东大学)

 $pp \to W^{\mp}H^{\pm} \to l + E_T + b\bar{b}jj$

Bacground		$m_{H^{\pm}}$	
$tar{t}$	5.38×10^5	300	105
$t\bar{t}W$	5.22×10^2	400	49.7
$t\bar{t}Z$	6.85×10^2	500	25.7
WZjj	3.90×10^4	600	14.1
WWjj	6.88×10^4	800	4.90
W j j j j	2.55×10^7	1000	1.93

Table: the cross section of the SM backgrounds, unit of fb.

$$pp \to W^{\mp}H^{\pm} \to \left| l + E_T + b \right| \left| \bar{b}jj \right|$$

$$\begin{split} |M_{jjj} - m_t| &\leq 20 GeV; \text{b-taggering}; \; |M_{jjjj} - m_{H^{\pm}}| \leq 30 GeV; \\ |M_{jl\nu} - m_t| &> 20 GeV, \\ M_{jl} > 1.5 m_{H^{\pm}} \end{split}$$

鲍守山 (山东大学)

$m_{H^{\pm}}$ (GeV)	No cuts	Cut I	Cut I+II	Cut I+II+III
300	105	6.37	3.33	1.43
400	49.7	4.41	2.05	1.11
500	25.7	2.83	1.20	0.72
600	14.1	1.81	0.70	0.45
800	4.90	0.77	0.26	0.18
1000	1.93	0.35	0.10	0.07

S/B	0.01	0.03	0.31	0.57	>9	> 3.5
S/\sqrt{B}	2.27	3.42	8.15	8.77	$>\!\!22$	> 8.57

<ロト <回ト < 回ト < 三ト

The S/\sqrt{B} is improved to 8 for $m_{H^{\pm}} = 500$ GeV, so that the reconstruction of H^{\pm} through tb final states is possible.

$$pp \to W^{\mp} H^{\pm} \to l + E_T + b\bar{b}jj | \mathbf{vs} | pp \to W^{\mp} W'^{\pm} \to l + E_T + b\bar{b}jj |$$

•
$$H^{\pm} \to t\bar{b}(\bar{t}b) \sim p_t \cdot p_b$$
: Isotropic in H^{\pm} rest frame
• ${W'}^{\pm} \to t\bar{b}(\bar{t}b) \sim p_b \cdot \epsilon$: Not Isotropic in W' rest frame

鲍守山 (山东大学)

Charged Bosons

2012-5 9 / 10

H^{\pm} at LHC– H^{\pm} vs W'^{\pm}

 $\sim 1 + A \cos^2 \theta$

	H^{\pm}	$W_L^{\prime\pm}$	$W_R^{\prime\pm}$	$W_V^{\prime\pm}$
No cuts	0	0.69	0.28	0.65

鲍守山 (山东大学)

2012-5 9 / 10

H^{\pm} at LHC– H^{\pm} vs W'^{\pm}

 $\sim 1 + A \cos^2 \theta$

	H^{\pm}	$W_L^{\prime\pm}$	$W_R^{\prime\pm}$	$W_V^{\prime\pm}$
No cuts	0	0.69	0.28	0.65
Cuts	-0.13	0.66	0.14	0.60

鲍守山 (山东大学)

2012-5 9 / 10

- $\sigma(W^{\pm}H^{\mp})$ is model-dependent. $(\sigma = 0.72) \times (\mathcal{L} = 300) \sim 200$ for $m_{H^{\pm}} = 500 GeV$.
- The distribution of the final states can be used to distinguish H[±] and W'[±]. A_{H[±]} < 0, A_{W'} > 0

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- $\sigma(W^{\pm}H^{\mp})$ is model-dependent. $(\sigma = 0.72) \times (\mathcal{L} = 300) \sim 200$ for $m_{H^{\pm}} = 500 GeV$.
- The distribution of the final states can be used to distinguish H[±] and W'[±]. A_{H[±]} < 0, A_{W'} > 0

THANK YOU!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○