The Geometry and Field Theory of Deformed Very Special Relativity

Collaborator: Zhang Lei

XUE XUN

East China Normal University

May 9, 2012, Chongqing

(日) (同) (三) (

ECNU

XUE XUN

Table of contents

based on arXiv: 1204.6425, 1205.1134 and "The field theory realization of very special relativity", to appear

- Lorentz violation, the theoretical investigations
- The very special relativity model
- The deformed Sim(2) very special relativity is a Finsler geomrtry
- The proper subgroups of Lorentz group
- The deformation Lie group
- The deformed Poincaré subgroup
- The invariant metric under deformed Poincaré subgroup

(日) (同) (三) (三)

FCNU

The field theory construction

Lorentz violation, the theoretical investigations

- The possible Lorentz violation is an important theoretical question.
- The theoretical investigation and experimental examination of Lorentz symmetry have made considerable progress and attracted a lot of attentions since the mid of 1990s.
- Coleman and Glashow, boost invariance violation in the rest frame of the cosmic background radiation

(日) (同) (三) (三)

FCNU

 Colladay and Kostelecky standard model extension incorporating Lorentz and CPT violation

Finsler geometry realization of doubly special relativity

- large boosts naturally uncover the structure of spacetime at arbitrary small scales
- The modification of special relativity with an additional fundamental length scale, the Planck scale, is known as doubly special relativity(DSR)
- The realization of DSR can be noncommutative spacetime or the non-linear realization of Poincare group.
- deformed dispersion relation, the main feature of DSR, can also leads to Finsler type of spacetime geometry

(日) (同) (三) (三)

FCNU

Cohen-Glashow's very special relativity model

- at low energy scales (QED + QCD), P, C and T are individually good symmetries of nature
- Cohen and Glashow argued that the local symmetry of physics might not need to be as large as Lorentz group but its proper subgroup
- the full symmetry restores to Poincare group when discrete symmetry P, T, CP or CT enters
- ► The Lorentz violation is thus connected with CP violation.

(日) (同) (三) (三)

FCNU

The identified VSR subgroups up to isomorphism

- ► T(2) (2-dimensional translations) with generators T₁ = K_x + J_y and T₂ = K_y - J_x, where J and K are the generators of rotations and boosts respectively
- ► E(2) (3-parameter Euclidean motion) with generators T₁, T₂ and J_z,
- ► HOM(2) (3-parameter orientation preserving transformations) with generators T₁, T₂ and K_z

FCNU

► SIM(2) (4-parameter similitude group)with generators T₁, T₂, J_z and K_z.

The realization of VSR

- TSheikh-Jabbar et.al proved that the quantum field theory on the noncommutative Moyal plane with light-like noncommutativity possesses VSR symmetry.
- Gibbons, Gomis and Pope point out the deformed ISIM(2) admits a Finsler line element
- Zhe Chang et.al.: the isometric group of a special case of (α, β)-type Finsler space is the same with the symmetry of VSR.

< < >> < </p>

FCNU

The deformed Sim(2) very special relativity is a Finsler geometry

- Gibbons, Gomis and Pope : duo to quantum corrections or the quantum gravity effect, ISIM(2) admits a 2-parameter family of continuous deformations, none of these give rise to noncommutative translations analogous to those of the de Sitter deformation of the Poincare group: space-time remains flat
- only a 1-parameter $DISIM_b(2)$ is physically acceptable.
- ► The line element invariant under $DISIM_b(2)$ is Lorentz violating and of Finsler type,

 $ds^2 = (\eta_{\mu\nu} dx^{\mu} dx^{\nu})^{1-b} (n_{\mu} dx^{\mu})^{2b}.$

The DISIM_b(2) invariant equation for spin 0 field is in general a nonlocal equation, since it involves fractional derivatives.

FCNU

The proper subgroups of Lorentz group

The Lorentz Lie algebra has the following Lie sub-algebra up to isomorphism

- Lie subalgebra with a single generator
- two Lie subalgebras with two generators:

• span
$$\{r_x, b_x\}$$
: $[r_x, b_x] = 0$,

- span $\{r_x + b_y, b_z\}$: $[b_x + r_y, b_z] = b_x + r_y$.
- one Lie subalgebras with four generators:

 $[t_1, t_2] = [r_z, b_z] = 0$, $[r_z, t_1] = t_2$, $[r_z, t_2] = -t_1$ and $[b_z, t_1] = -t_1$, $[b_z, t_2] = -t_2$

(日) (同) (三) (三)

FCNU

four Lie subalgebras with three generators:

- ▶ span { r_x, r_y, r_z } (the so(3)): [r_x, r_y] = $r_z, [r_y, r_z] = r_x, [r_z, r_x] = r_y$,
- ▶ span $\{b_x, b_y, r_z\}$ (the Lorentz algebra in 2+1 dimension): $[b_x, b_y] = -r_z, [b_y, r_z] = b_x, [r_z, b_x] = b_y.$
- ▶ span { t_1, t_2, r_z } (the 2 dimensional Eudlidean algebra e(2)): [t_1, t_2] = 0, [r_z, t_1] = t_2 , [r_z, t_2] = $-t_1$.

ECNU

span {t₁, t₂, b_z}(2-dimensional orientation preserving transformations group HOM(2)):
 [t₁, t₂] = 0, [b₂, t₁] = −t₁, [b₂, t₂] = −t₂.

Deformation of Lie Algebra

For a Lie algebra with commutation relations,

$$[T_i, T_j] = C_{ij}^k T_k, \tag{1}$$

 suppose the structure constants of deformed Lie algebra is of the form

$$\hat{C}_{ij}^{k} = C_{ij}^{k} + tA_{ij}^{k} + t^{2}B_{ij}^{k} + \dots$$
(2)

t :deformation parameter.

The constrain on deformed structure constants from Jacobi identity

$$[[T_i, T_j], T_k] + [[T_j, T_k], T_i] + [[T_k, T_i], T_j] = 0$$
 (3) has the form

$$\hat{C}_{l[k}^{m} \hat{C}_{ij]}^{\prime} = \hat{C}_{lk}^{m} \hat{C}_{ij}^{\prime} + \hat{C}_{li}^{m} \hat{C}_{jk}^{\prime} + \hat{C}_{lj}^{m} \hat{C}_{ki}^{\prime} = 0.$$
(4)

ECNU

XUE XUN

The expansion of deformed structure constant with the power of t :

$$t\left(A_{l[k}^{m}C_{ij]}^{\prime}+C_{l[k}^{m}A_{ij]}^{\prime}\right)+t^{2}\left(A_{l[k}^{m}A_{ij]}^{\prime}+B_{l[k}^{m}C_{ij]}^{\prime}+C_{l[k}^{m}B_{ij]}^{\prime}\right)+...=0.$$
(5)

If there exists a family of deformed Lie algebra parametrized by a continuous variable t, there should be a group of constrained equations which arise from every power of t in the above equation, as

$$A_{l[k}^{m} C_{ij]}^{\prime} + C_{l[k}^{m} A_{ij]}^{\prime} = 0,$$
(6)

< (17) > <

∃ >

FCNU

$$A_{l[k}^{m}A_{ij]}^{l} + B_{l[k}^{m}C_{ij]}^{l} + C_{l[k}^{m}B_{ij]}^{l} = 0$$
(7)

and etc.

XUE XUN

► To avoid trivial deformation : $S^{\upsilon}_{\mu} = \delta^{\upsilon}_{\mu} + t\phi^{\upsilon}_{\mu} + ... \in GL(n, \mathbb{R})$, such that $\hat{C}^{k}_{ij} = S^{k}_{c}C^{c}_{ab}(S^{-1})^{a}_{i}(S^{-1})^{b}_{i}$ and hence

$$A_{ij}^{k} = \phi_{l}^{k} C_{ij}^{l} - C_{lj}^{k} \phi_{i}^{l} - C_{il}^{k} \phi_{j}^{l}.$$
 (8)

► Define λ^{μ} as the basis vector of the original Lie algebra (the left invariant 1-form), then $d\lambda^i = -\frac{1}{2}C^i_{ab}\lambda^a \wedge \lambda^b$ [1] [7]. Define one form field $\Phi^a = \phi^a_b \lambda^b$ and 2-form field $A^a = \frac{1}{2}A^a_{ij}\lambda^i \wedge \lambda^j$ and $B^a = \frac{1}{2}B^a_{ij}\lambda^i \wedge \lambda^j$ a matrix valued 1-form field $C^b_a = \lambda^c C^b_{ca}$. So we have the covariant exterior differential operator of the present Lie algebra $D = d + C \wedge$, the formula (6) can be rewritten as

$$DA^a = 0, A^a \neq -D\Phi^a.$$
(9)

< < >> < </p>

ECNU

• The Jacobi Identity requires $D^2 = 0$, then

$$DB^a + (A \bullet A)^a = 0, \qquad (10)$$

< < >> < </p>

ECNU

where $(A \bullet A)^a = \frac{1}{2} A^a_{b[c} A^b_{de]} \lambda^c \wedge \lambda^d \wedge \lambda^e$. The equation is solvale requires $D(A \bullet A)^a = 0$.

If we set A • A = 0, we find that the second order term of deformation will also satisfy (9). Then the accetable form of B^µ is the same as one of A^µ. It is enough to consider the first order deformed term only.

The Perturbative Solution of the Representation of the Deformation group Generators

- The natural representation of the deformed generators is the representation inherit from the Poincaré group's 5 dimensional natural matrix representation
- ▶ Suppose $\{T'_i = T_i + \tau G_i\}$ and $C'^k_{ij} = C^k_{ij} + tA^k_{ij}$, hence

$$C_{ij}^k T_k = [T_i, T_j]$$

•
$$C'_{ij}^{k}T'_{k} = [T'_{i}, T'_{j}],$$

► $\tau^2 [G_i, G_j] + \tau ([G_i, T_j] + [T_i, G_j] - C_{ij}^k G_k - tA_{ij}^k G_k) - tA_{ij}^k T_k = 0$, where Ts and Gs are all 5 × 5 matrices

(ロ) (四) (三) (三)

FCNU

N × 5 × 5 = 25N unknown variables for a Lie algebra with N generators, e.g. 250 unknown for Poincaré group, 200 for ISIM group and 175 for IHOM group

► In general, we can assume that $tA_{ij}^k = \tau \bar{A}_{ij}^k$,

$$\begin{cases} [G_i, G_j] - \bar{A}_{ij}^k G_k = 0\\ [G_i, T_j] + [T_i, G_j] - C_{ij}^k G_k - \bar{A}_{ij}^k T_k = 0 \end{cases}$$
(11)

• The simplest case is $t_1 A_{ij}^k = \bar{A}_{ij}^k$ and $t = t_1 \tau$. Rewrite t_1 as t

$$\begin{cases} [G_i, G_j] - tA_{ij}^k G_k = 0\\ [G_i, T_j] + [T_i, G_j] - C_{ij}^k G_k - tA_{ij}^k T_k = 0. \end{cases}$$
(12)

< ロ > < 同 > < 回 > < 回 >

ECNU

There may be more than one set of solutions, which corresponding to different spacetime geometry.

Example: the deformation group of *SIM*

• the semi-direct product of SIM with T(4), ISIM:

$$\begin{aligned} [t_1, r_z] &= -t_2, [t_1, b_z] = t_1, [t_1, p_t] = [t_1, p_z] = p_x, \\ [t_2, r_z] &= t_1, [t_2, b_z] = t_2, [t_2, p_t] = [t_2, p_z] = p_y, \\ [t_1, p_x] &= p_t - p_z, [t_2, p_y] = p_t - p_z, [r_z, p_x] = p_y, \\ [r_z, p_y] &= -p_x, [b_z, p_t] = p_z, [b_z, p_z] = p_t. \end{aligned}$$
(13)

► The Jacobi constrain reduces the 8 × ^{8×7}/₂ = 224 deformation parameters to 57. The simplest solution A • A = 0 reduces further to 6 ones,

$$A_{1b}^{1}, A_{1x}^{t}, A_{1x}^{z}, A_{rt}^{t}, A_{bt}^{t}, A_{bt}^{z},$$
(14)

ヘロト ヘ回ト ヘヨト ヘヨト

FCNU

where r, b, t, x, z represent r_z, b_z, p_t, p_x, p_z respectively.

XUE XUN

The commutation relation for DISIM is

$$\begin{bmatrix} t_1, r_z \end{bmatrix} = -t_2, \begin{bmatrix} t_1, b_z \end{bmatrix} = \left(1 + A_{1b}^1\right) t_1, \begin{bmatrix} t_2, r_z \end{bmatrix} = t_1, \\ \begin{bmatrix} t_1, p_t \end{bmatrix} = p_x, \begin{bmatrix} t_1, p_x \end{bmatrix} = \left(1 + A_{1x}^t\right) p_t - \left(1 - A_{1x}^z\right) p_z, \\ \begin{bmatrix} t_1, p_z \end{bmatrix} = \left(1 + A_{1x}^t + A_{1x}^z\right) p_x, \begin{bmatrix} t_2, b_z \end{bmatrix} = \left(1 + A_{1b}^1\right) t_2, \\ \begin{bmatrix} t_2, p_t \end{bmatrix} = p_y, \begin{bmatrix} t_2, p_y \end{bmatrix} = \left(1 + A_{1x}^t\right) p_t - \left(1 - A_{1x}^z\right) p_z, \\ \begin{bmatrix} t_2, p_z \end{bmatrix} = \left(1 + A_{1x}^t + A_{1x}^z\right) p_y, \begin{bmatrix} r_z, p_t \end{bmatrix} = A_{rt}^t p_t, \\ \begin{bmatrix} r_z, p_x \end{bmatrix} = p_y + A_{rt}^t p_x, \begin{bmatrix} r_z, p_y \end{bmatrix} = -p_x + A_{rt}^t p_y, \\ \begin{bmatrix} r_z, p_z \end{bmatrix} = A_{rt}^t p_z, \begin{bmatrix} b_z, p_t \end{bmatrix} = p_z + A_{bt}^t p_t + A_{bt}^z p_z, \\ \begin{bmatrix} b_z, p_x \end{bmatrix} = \left(A_{1x}^t + A_{1x}^z + A_{bt}^t + A_{bt}^z - A_{1b}^1\right) p_x, \\ \begin{bmatrix} b_z, p_y \end{bmatrix} = \left(A_{1x}^t + A_{1x}^z + A_{bt}^t + A_{bt}^z - A_{1b}^1\right) p_y, \\ \begin{bmatrix} b_z, p_z \end{bmatrix} = p_t + \left(2A_{1b}^1 - A_{bt}^z\right) p_t \\ + \left(2A_{1x}^t + 2A_{1x}^z + A_{bt}^t + 2A_{bt}^z - 2A_{1b}^1\right) p_z. \end{bmatrix}$$

・ロト ・回ト ・ヨト ・ヨト

2

ECNU

XUE XUN

The non-triviality condition is

$$A_{rt}^{t^{2}} + \left(A_{1x}^{t} + A_{1x}^{z} + A_{bt}^{t} + A_{bt}^{z} - A_{1b}^{1}\right)^{2} \neq 0.$$
 (16)

• The simplest solution $A \bullet A = 0$ gives

$$\begin{cases} A_{1x}^{z} (A_{1x}^{t} + A_{1x}^{z}) = 0\\ A_{bt}^{z} (A_{1x}^{t} + A_{1x}^{z}) = 0\\ (A_{1x}^{t} - 2A_{1b}^{1}) (A_{1x}^{t} + A_{1x}^{z}) = 0 \end{cases}$$
(17)

(日) (同) (三) (三)

ECNU

- A¹_{1b} -deformation inside of the original sim .We thus can classify DISIM into two classes.
- There are many subcases.

The example case, $A_{bt}^t = 0$

In the example case: $A_{bt}^t = 0$. Denoting $A_1 = A_{rt}^t$ and $A_2 = A_{bt}^t$, the representation matrices of the deformed generators are

<ロ> (四) (四) (三) (三)

ECNU

The corresponding single parameter group elements are

$$R_{z}(\theta) = \begin{pmatrix} e^{\theta A_{1}} & e^{\theta A_{1}} \cos \theta & -e^{\theta A_{1}} \sin \theta & e^{\theta A_{1}} \cos \theta & e^{\theta A_{1}} \sin \theta & e^{\theta A_{1}} \cos \theta & e^{\theta A_{1}} & 1 \end{pmatrix}, \quad (19)$$
$$B_{z}(\theta) = \begin{pmatrix} e^{\theta A_{2}} \cosh \theta & e^{\theta A_{2}} \cos \theta & e^{\theta A_{2}} \cos \theta & 1 \end{pmatrix}, \quad (19)$$

<ロ> <四> <四> <日> <日> <日</p>

2

ECNU

XUE XUN

Note: $R_z(\theta)$ is a rotation followed by a dilatation $e^{\theta A_1}$. $R_z(2\pi) = e^{2\pi A_1}$ is a pure dilatation when $A_1 \neq 0$. To keep $R_z(\theta)$ as a reasonable local rotation operation, one demands $A_1 = 0$. Denoted A_2 by *b* the deformed boost operation :

$$B_{z}(\theta) = e^{b\theta} \begin{pmatrix} \cosh\theta & \sinh\theta \\ 1 & \\ & 1 \\ \sinh\theta & \cosh\theta \end{pmatrix}, \quad (20)$$

(日) (同) (三) (

FCNU

an ordinary boost followed by a dilatation.

Summary of deform group

Summary: the deformation of semi-direct product of all of three and four generators Lorentz subgroups with T(4) and their natural representations

Table : The Deformation of semi-direct product Poincaré subgroups.

subgroup	class	subclass	natural rep.	remark
Poincaré	de Sitter	de Sitter	1	the isometry group of maximal symmetric space of 4-spacetime
	DISIM (SIM undeformed)	DISIM	1	lots of equivalent deformation corresponding to generators redefinition and additional accompanied dilatation for rotation and boost operation
ISIM	XDISIM1 (SIM deformed)	XDISIM1	1	lots of equivalent deformation corresponding to generators redefinition and additional accompanied dilatation for rotation and boost operation
	XDISIM2 (SIM deformed)	XDISIM2	1	additional accompanied dilatation for rotation operation additional accompanied dilatation for boost operation

Image: A math a math

FCNU

XUE XUN

іном	DIHOM1 (WDISIM)	DIHOM1 (WDISIM)	1	lots of equivalent representations corresponding to generators redefinition, additional accompanied dilatation for boost operation
				same structure as the corresponding part of DISIM
	DIHOM2	DIHOM2	1	no natural representations inherited from Poincaré group
	(DIHOM)	(DIHOM)	1	additional accompanied dilatation for boost operation
	DTE1	DTE1	1	additional accompanied dilatation for rotation operation
	DILI			rotation operation not only in xy plane but also in rotated tz plane
	DTE2	DTE2a	2	translations are entangled with t_1 and t_2 operations
TE(2)	DILZ	DTE2b	0	no natural representation inherited from Poincaré group
	DTE3	DTE3a	2	translations are entangled with t_1 and t_2 operations
		DTE3b	1	translations are entangled with t_1 and t_2 operations
				rotation operation not only in xy plane but also in rotated tz plane
ISO(3)	DISO(3)1	DISO(3)1	1	inequivalent representation corresponding to different sign of deform
	2130(3)1			parameter, only translations operations deformed
	DISO(3)2	DISO(3)2	3	three inequivalent representations
				only translations operations deformed
ISO(2,1)	DISO(2, 1)1	DISO(2, 1)1	1	inequivalent representation corresponding to different sign of deform
			T	parameter, only translations operations deformed
	DISO(2, 1)2	DISO(2, 1)2	2	two inequivalent representations
			2	only translations operations deformed

・ロン ・回 と ・ ヨ と ・ ヨ と

ъ.

ECNU

XUE XUN

Minkowski-Finsler Manifold

- The geometry with deformed Poincaré subgroup symmetry is usually a Finsler Geometry.
- In Finsler geometry, Minkowski-Finsler manifold is a class of flat manifolds whose Finsler norm does not change with the coordinate on the base manifold and hence a function of the coordinate of the vector space, F = F(y^α).
- We are seeking the Minkowski-Finsler type of geometry with deformed Poincaré subgroup symmetry.

< < >> < </p>

The Invariant Metric

Without losing generality

$$F^2 = \prod_{i=1}^M F_i. \tag{21}$$

$$F_i = M_i^{E_i}, \tag{22}$$

where E_i is constant and M_i satisfies

$$M_{i}(y^{\mu}) = G_{\mu_{1}\mu_{2}...\mu_{p_{i}}} \prod_{j=1}^{p_{i}} y^{\mu_{j}}.$$
 (23)

► The G_{µ1µ2...µpi} is constant tensor. For F² is a degree 2 homogenous function of y_µ, we have

$$\sum_{i=1}^{M} p_i E_i = 2.$$
(24)
(24)
(24)

XUE XUN

 Suppose T_a is a single parameter group element we can demand

$$M_{i}(T_{a}(y^{\mu})) = A_{ia}M_{i}(y^{\mu}).$$
(25)

▶ For F^2 is invariant under the action of T_a , we have

$$\prod_{i=1}^{M} A_{ia}^{E_i} = 1,$$
(26)

< ロ > < 回 > < 回 > < 回 > < 回 >

э

ECNU

Summary of The Invariant Metric

Table : The Finsler spacetime with symmetry group of Poincarésubgroups and deformed Poincaré subgroups

symmetric	conformal covariant tensor conformal factor		
group	the invariant metric and additional remark		
de Sitter	no Minkowski-Finsler type of invariant metric		
Poincaré	$G_{\mu\nu} = \begin{pmatrix} -1 & & \\ & 1 & \\ & & 1 \end{pmatrix}$ $F^2 = G_{\mu\nu} y^{\mu}.$	1 y ^v	

<ロ> <同> <同> < 回> < 回>

ECNU

XUE XUN

	$N_{\mu}=\left(egin{array}{ccccc} 1 & 0 & 0 & 1 \end{array} ight)^{T}$	$B_{z}\left(heta ight)$: $e^{(1+A_{2}) heta}$			
DISIM	${\sf G}_{\mu u}$	$B_{z}\left(heta ight) :e^{2A_{1} heta}$			
	$F^2 = (G_{\mu\nu}y^{\mu}y^{\nu})^{1+A_2}(N_{\mu}y^{\mu})^{-2A_2}$				
	N_{μ}	$B_{z}\left(heta ight)$: $e^{(1+A_{3}) heta}$			
XDISIM1	$G_{\mu u}$	$B_{z}\left(heta ight):e^{2\left(A_{3}-A_{1} ight) heta}$			
	$F^{2} = (G_{\mu u}y^{\mu}y^{\upsilon})^{rac{1+A_{3}}{1+A_{1}}} (N_{\mu}y^{\mu})^{-2rac{A_{3}+A_{1}}{1+A_{1}}}$				
	no invariant metric incase of ${\cal A}_1=-1$				

XUE XUN

The Geometry and Field Theory of Deformed Very Special Relativity

ECNU

ъ.

・ロト ・回ト ・ヨト ・ヨト

	N_{μ}	$B_{z}\left(heta ight) :e^{\left(1+A_{3} ight) heta}$			
	$H_{(M,N)\mu\upsilon}$	$B(\theta) \cdot e^{2(A_3 - A_1)\theta}$			
XDISIM2	where $M = -\frac{1+A_3}{1+A_1}, N = \frac{A_1-A_3}{1+A_1}$	$D_Z(0)$. C			
	$F^{2} = \left(H_{(M,N)\mu\upsilon}y^{\mu}y^{\nu}\right)^{\frac{1+A_{3}}{1+A_{1}}} \left(N_{\mu}y^{\mu}\right)^{-2\frac{A_{3}-A_{1}}{1+A_{1}}}$				
	a <i>t</i> – <i>z</i> plane non-orthogonal linear transformation is made relative to <i>DISIM</i>				
	N_{μ}	$B_{z}\left(heta ight)$: $e^{ heta}$			
ISIM	${\cal G}_{\mu u}$	invariant			
	$F^2 = G_{\mu u}y^\mu y^ u$				

◆□> ◆□> ◆注> ◆注>

ъ.

ECNU

XUE XUN

DIHOM	no invariant metric function		
WDIHOM	the same as DISIM		
IHOM	the same as <i>ISIM</i>		
DTE1	no invariant metric function		
	N_{μ}	invariant	
DTF2a1	$G_{\mu \upsilon}$	$P_{t}\left(heta ight),P_{z}\left(heta ight):e^{\mathcal{A}_{2} heta}$	
DTEZAI	${\sf F}={\sf N}_\mu { m y}^\mu$		
	the re	lation between two deform parameters: $A_1 = A_2^2/4$	

ъ.

ECNU

XUE XUN

	N_{μ}	$P_{t}\left(heta ight),P_{z}\left(heta ight):\mathrm{e}^{\left(2\lambda-A_{2} ight) heta}$		
DTE2a2	$G_{\mu\nu}$ $P_t(\theta), P_z(\theta): e^{2\lambda\theta}$			
		$F^2 = (G_{\mu v} y^\mu y^v)^{rac{A_2 - 2\lambda}{A_2 - \lambda}} (N_\mu y^\mu)^{rac{2\lambda}{A_2 - \lambda}}$		
	deforr	n parameters satisfy: $\lambda^2-{\cal A}_2\lambda+{\cal A}_1=0$ and $\lambda eq {\cal A}_2$		
DTE2b	no invariant metric function			
DTE3a	the same as DTE2a			

ъ.

ECNU

XUE XUN

<ロ> (四) (四) (三) (三)

æ

ECNU

XUE XUN

	the same as $DTE3b$ and hence denote $DTE3b$ by $TE(2)$
DISO(3)1	no invariant metric
DISO(3)2	no invariant metric
DISO(2,1)1	no invariant metric
DISO(2,1)2	no invariant metric

ъ.

ECNU

XUE XUN

$$ISO(3) \begin{array}{|c|c|c|} T_{\mu} = \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix}^{T} & \text{invariant} \\ \hline G_{(a,b)\mu\nu} = \begin{pmatrix} a & & \\ & b & \\ & & b \end{pmatrix} & \text{invariant} \\ \hline F^{2} = (T_{\mu}y^{\mu})^{A} \prod_{a,b} (G_{(a,b)\mu\nu}y^{\mu}y^{\nu})^{B_{a,b}} \\ \text{the constrain condition: } A + 2 \sum_{a,b} B_{a,b} = 2 \end{array}$$

ъ.

ECNU

XUE XUN

$$ISO(2,1) \qquad \begin{array}{c|c} X_{\mu} = \begin{pmatrix} 0 & 1 & 0 & 0 \end{pmatrix}^{T} & \text{invariant} \\ \hline & & \\ & &$$

ъ.

ECNU

XUE XUN

 The invariant metric function for deformed Poincaré subgroup can be written as

$$F^{2} = (A_{\mu}y^{\mu})^{2-2\sum_{a,b}D_{a,b}} \prod_{a,b} (B_{(a,b)\mu\nu}y^{\mu}y^{\nu})^{D_{a,b}}$$

where A_{μ} can be N_{μ} , T_{μ} and X_{μ} while $B_{(a,b)\mu\nu}$ can take $\tilde{G}_{(a,b)\mu\nu}$, $B_{(a,b)\mu\nu}$ and $H_{(a,b)\mu\nu}$. For different groups, the metric usually are: $F^2 = G_{\mu\nu}y^{\mu}y^{\nu}$, $(N_{\mu}y^{\mu})^2$ or $(G_{\mu\nu}y^{\mu}y^{\nu})^{1-A}(N_{\mu}y^{\mu})^{2A}$.

 metric function can be constructed by adding different parts, e.g. TE(2) can have such form metric function

$$F = A\sqrt{G_{\mu\nu}y^{\mu}y^{\nu} + (N_{\mu}y^{\mu})^{2}} + B\sqrt{G_{\mu\nu}y^{\mu}y^{\nu}} + CN_{\mu}y^{\mu}.$$
 (27)

(a)

ECNU

- Among undeformed groups, only the ISIM group invariant metric function is the Minkowskian while the metric TE(2), ISO(3) and ISO(2,1) invariant are all of the deformed form.
- the existence of invariant metric function automatically excludes the additional accompanied scale transformation for rotation operation, i.e. it is a requirement of geometry that the rotation operation is unchanged even in a Lorentz violation theory

Image: A math a math

More Forms of Metric Function

- Metric function can have plenty structure,
- ► If there exist some scalar function φ (y^μ) which is the zero degree homogenous function of y^μ and invariant, the product of φ and the metric function is still an invariant metric function.

(日) (同) (三) (三)

Table : invariant zero degree functions of deformed Poincaré subgroup

symmetric group	invariant zero degree homogenous function ϕ
DISIM	$\phi = 1$
XDISIM1	$\phi = 1$
XDISIM2	$\phi = 1$
ISIM	$\phi = 1$
DTE2a1	$\phi=1$
DTE2a2	$\phi = 1$
DTE3b	$\phi = 1$
TE(2)	$\phi_{\boldsymbol{a},\boldsymbol{b};\boldsymbol{c},\boldsymbol{d}} = \frac{H_{(\boldsymbol{a},\boldsymbol{b})\mu\upsilon}y^{\mu}y^{\upsilon}}{H_{(\boldsymbol{c},\boldsymbol{d})\mu\upsilon}y^{\mu}y^{\upsilon}}$
ISO(3)	$\phi_{\mathbf{a},\mathbf{b}} = \frac{(T_{\mu}y^{\mu})^2}{G_{(a,b)\mu\upsilon}y^{\mu}y^{\upsilon}} \text{ and } \phi_{\mathbf{a},\mathbf{b};\mathbf{c},\mathbf{d}} = \frac{G_{(a,b)\mu\upsilon}y^{\mu}y^{\upsilon}}{G_{(c,d)\mu\upsilon}y^{\mu}y^{\upsilon}}$
ISO(2,1)	$\phi_{a,b} = \frac{(X_{\mu}y^{\mu})^2}{\tilde{G}_{(a,b)\mu\upsilon}y^{\mu}y^{\upsilon}} \text{ and } \phi_{a,b;c,d} = \frac{\tilde{G}_{(a,b)\mu\upsilon}y^{\mu}y^{\upsilon}}{\tilde{G}_{(c,d)\mu\upsilon}y^{\mu}y^{\upsilon}}$

XUE XUN

The Geometry and Field Theory of Deformed Very Special Relativity

ECNU

For DTE3b, TE(2), ISO(3), ISO(2,1), the invariant metric function can take the form of

DTE3b:	$F^{2} = (G_{\mu \upsilon} y^{\mu} y^{\upsilon})^{1-A} (N_{\mu} y^{\mu})^{2A} S(\phi_{\text{DTE3b}})$
TE (2):	$F^{2} = \prod_{a,b} \left(H_{(a,b)\mu\nu} y^{\mu} y^{\nu} \right)^{D_{a,b}} S\left(\phi_{\text{TE}(2)a,b;c,d} \right)$
ISO (3):	$F^{2} = (T_{\mu}y^{\mu})^{A} \prod_{a,b} (G_{(a,b)\mu\nu}y^{\mu}y^{\nu})^{B_{a,b}}$
	$\mathcal{S}\left(\varphi_{\mathrm{ISO}(3)a,b}, \varphi_{\mathrm{ISO}(3)a,b;c,d} \right)$
ISO (2,1):	$F^{2} = (X_{\mu}y^{\mu})^{A} \prod_{a,b} \left(\tilde{G}_{(a,b)\mu\nu}y^{\mu}y^{\nu} \right)^{B_{a,b}}$ $S\left(\phi_{\mathrm{ISO}(2,1)a,b}, \phi_{\mathrm{ISO}(2,1)a,b;c,d}\right)$

<ロ> (四) (四) (三) (三)

э

ECNU

where S is an arbitrary function.

The Physics of Deformed Very Special Relativity

- the action for point particle
- In Finsler spacetime, the action for free point particle has the form of

$$S = \int_{\tau_1}^{\tau_2} mF(x^{\mu}, V^{\mu}) d\tau = \int_{t_1}^{t_2} \frac{mF(x^{\mu}, V^{\mu})}{V^t} dt$$

where
$$V^{\mu} = rac{dx^{\mu}}{d au}$$

The lagrangian is

$$L = \frac{mF(x^{\mu}, V^{\mu})}{V^{t}} = mF(x^{\mu}; v^{\mu})$$

(日) (同) (三) (三)

ECNU

where
$$v^{\mu} = \frac{V^{\mu}}{V^{t}}$$

XUE XUN

in DISIM spacetime, the lagrangian for point particle is

$$L = m (G_{\mu\nu} v^{\mu} v^{\nu})^{\frac{1-A}{2}} (N_{\mu} v^{\mu})^{A}$$

the conjugate momentum is

$$p_{\mu} = \frac{\partial L}{\partial v^{\mu}} = L \left[(1 - A) \, \mathcal{G}_{\mu \upsilon} v^{\upsilon} (\mathcal{G}_{\mu \upsilon} v^{\mu} v^{\upsilon})^{-1} + A N_{\mu} (N_{\mu} v^{\mu})^{-1} \right]$$

 The momentum can be decomposed into kinematic part and the interacting part

$$\begin{cases} p_{\mu} = k_{\mu} + f_{\mu} \\ k_{\mu} = (1 - A) L(G_{\mu\nu} v^{\mu} v^{\nu})^{-1} G_{\mu\nu} v^{\nu} \\ f_{\mu} = A L(N_{\mu} v^{\mu})^{-1} N_{\mu} \end{cases}$$

(日) (同) (三) (三)

ECNU

XUE XUN

dispersion relation

$$(G^{\mu\nu}p_{\mu}p_{\nu})^{1+A}(N^{\mu}p_{\mu})^{-2A}=m^{2}(1-A^{2})^{1+A}(1-A)^{-2A}$$

similar relation for the kinematic momentum

$$\begin{cases} G^{\mu\nu}k_{\mu}k_{\nu} = (1-A)^{2}L^{2}(G_{\mu\nu}v^{\mu}v^{\nu})^{-1} \\ N^{\mu}k_{\mu} = (1-A)L(G_{\mu\nu}v^{\mu}v^{\nu})^{-1}N_{\mu}v^{\nu} \\ (G^{\mu\nu}k_{\mu}k_{\nu})^{1+A}(N^{\mu}k_{\mu})^{-2A} = (1-A)^{2}m^{2} \end{cases}$$

・ロト ・回ト ・ヨト ・ヨト

2

ECNU

XUE XUN

The Action for DISIM

- For DISIM group, the boost operation has additional dilatation
- dilatation is commutative with all the group operation, one can add an additional conformal factor to the original representation of the group to construct the new representation
- scalar, spinor and vector fields have additional conformal factor

(日) (同) (三) (三)

 For DISIM group, from the massless dispersion relation of point particle, one can get the kinematic part of scalar lagrangian

$$L_m = C(\partial_\mu \phi^* \partial^\mu \phi)^r (N^\mu \phi^* \partial_\mu \phi - N^\mu \phi \partial_\mu \phi^*)^s$$

•
$$B_{z}(\theta): \phi \to e^{\frac{s-4A}{2(r+s)}\theta}\phi$$

the mass term for scalar field can be introduced by

$$L_{M} = D(\phi^{*}\phi)^{a} (N^{\mu}\phi^{*}\partial_{\mu}\phi - N^{\mu}\phi\partial_{\mu}\phi^{*})^{b}$$

イロト イポト イヨト イヨト

ECNU

where $b = \frac{4Ar - 4Aa + 4As + as}{r + 4A}$ and a, D to be determined.

XUE XUN

The dispersion relation for plane wave solution is

$$(p_{\mu}p^{\mu})^{r}(-2iN^{\mu}p_{\mu})^{s-b} = -rac{D(a+b)}{C(r+s)}$$

comparing with point particle's dispersion relation, one get

$$\begin{cases} b = s + \frac{2Ar}{1+A} \\ s = 2A\left(2 - \frac{r}{1+A}\frac{r+4A}{r-a}\right) \\ -\frac{D(a+b)}{C(r+s)} = m^{\frac{2r}{1+A}}\left(1 - A^2\right)^r [-2i(1-A)]^{-\frac{2Ar}{1+A}} \end{cases}$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

ECNU

XUE XUN

The Action for Fields

two key point to construct the action for fields,

- the action is invariant under the group action
- the plane wave solution of fields satisfy the dispersion relation for point particle

ECNU

one get finally

$$\begin{cases} a = 1 + n\sqrt{A}, b = s + 2A, s = 4A + 2\sqrt{A} \frac{1+5A}{n-\sqrt{A}}, D = \frac{a+2A+s}{1+A+s}m^{2} \\ j_{\mu} = \frac{i}{2(1-A)} \left(\phi^{*}\partial_{\mu}\phi - \phi\partial_{\mu}\phi^{*}\right), C = \left(1 - A^{2}\right)^{-(1+A)}, \end{cases}$$

The lagrangian is

$$L = (N^{\mu} j_{\mu})^{s+2A} \left[(1 - A^2)^{-(1+A)} (\partial_{\mu} \phi^* \partial^{\mu} \phi)^{1+A} (N^{\mu} j_{\mu})^{-2A} - \frac{a+2A+s}{1+A+s} m^2 (\phi^* \phi)^{1+n\sqrt{A}} \right]$$

expansion in the deformation parameter

$$L = \partial^{\mu} \phi^* \partial_{\mu} \phi - \left(1 + n\sqrt{A}\right) m^2 \phi^* \phi$$
$$-\frac{2\sqrt{A}}{n} \left[(\partial^{\mu} \phi^* \partial_{\mu} \phi) - m^2 \phi^* \phi \right] \ln \left(N^{\mu} \tilde{j}_{\mu}\right)$$

メロン メロン メビン メ

문어 문

ECNU

XUE XUN

similar result for the spinor field of DISIM

$$L = C \left(\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi - \partial_{\mu} \bar{\psi} \gamma^{\mu} \psi \right)^{r} \left(N_{\mu} \bar{\psi} \gamma^{\mu} \psi \right)^{s} + D \left(\bar{\psi} \psi \right)^{s} \left(N_{\mu} \bar{\psi} \gamma^{\mu} \psi \right)^{b}$$

where
$$B_z(\theta): \psi \to e^{\frac{s-4A}{2(r+s)}\theta}\psi$$
 and $b = \frac{4A(r+s)+a(s-4A)}{r+4A}$

the plane wave solution of fields give

$$\begin{cases} b = s + A\frac{2r-a}{1+A}, s = A\frac{r+4A}{r-a} \left(\frac{4r-4a}{r+4A} - \frac{2r-a}{1+A}\right) \\ \left[-\frac{D(a+b)}{C(r+s)}\right]^{\frac{2(1+A)}{2r-a}} (-2i)^{-\frac{2r(1+A)}{2r-a}} = m^2 (1-A^2)^{1+A} (1-A)^{-2A} \end{cases}$$

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

ECNU

XUE XUN

The action can be written finally

$$\begin{split} L &= \left(N_{\mu}\bar{\psi}\gamma^{\mu}\psi\right)^{s}\left\{\left[\frac{i}{2}\left(\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - \partial_{\mu}\bar{\psi}\gamma^{\mu}\psi\right)\right]^{1+n\sqrt{A}}\right.\\ &\left.-M\left(\bar{\psi}\psi\right)^{1+2n\sqrt{A}}\left(\frac{N_{\mu}\bar{\psi}\gamma^{\mu}\psi}{\bar{\psi}\psi}\right)^{A}\right\}\end{split}$$

where
$$s = \sqrt{A} \left(4 - \frac{1+n\sqrt{A}+4A}{\sqrt{A}-n}\right)$$
 and
 $M = m \frac{1+n\sqrt{A}+s}{1+2n\sqrt{A}+s} \left(1 - A^2\right)^{\frac{1+A}{2}} (1 - A)^{-A}$

the perturbative expansion is

$$\begin{split} L &= \frac{i}{2} \left(\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi - \partial_{\mu} \bar{\psi} \gamma^{\mu} \psi \right) - \left(1 - n\sqrt{A} \right) m \bar{\psi} \psi \\ &+ \left(4 + \frac{1}{n} \right) \sqrt{A} \left[\frac{i}{2} \left(\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi - \partial_{\mu} \bar{\psi} \gamma^{\mu} \psi \right) - m \bar{\psi} \psi \right] \ln \left(N_{\mu} \bar{\psi} \gamma^{\mu} \psi \right) \\ &+ n\sqrt{A} \left[\frac{i}{2} \left(\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi - \partial_{\mu} \bar{\psi} \gamma^{\mu} \psi \right) \right] \ln \left[\frac{i}{2} \left(\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi - \partial_{\mu} \bar{\psi} \gamma^{\mu} \psi \right) \right] \\ &- 2n\sqrt{A} m \left(\bar{\psi} \psi \right) \ln \left(\bar{\psi} \psi \right) \end{split}$$

XUE XUN

ECNU

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

similar method can get the action for the vector field

$$L = (N^{\mu}A^{\nu}F_{\nu\mu})^{s+2A} \left[\left(\frac{F_{\mu\nu}F^{\mu\nu}}{4(1-A^{2})} \right)^{1+A} (N^{\mu}A^{\nu}F_{\nu\mu})^{-2A} - \frac{1}{2}M^{2}(A^{\mu}A_{\mu})^{1+n\sqrt{A}} \right]$$

where
$$s = 2\sqrt{A} \frac{1+2n\sqrt{A}+3A}{n-\sqrt{A}}$$
 and $M = \sqrt{\frac{1+A}{1+n\sqrt{A}}}(1-A)^{-A}m$

the action for massless vector field in TE(2) spacetime is

$$L = \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{g^2}{2} (N^{\mu} A^{\nu} F_{\nu\mu})^2$$

the action for massless vector field in DISIM spacetime is

$$L = \left(\frac{F_{\mu\nu}F^{\mu\nu}}{4\left(1-A^{2}\right)}\right)\left(N^{\mu}A^{\nu}F_{\nu\mu}\right)^{4A}$$

・ロト ・回ト ・ヨト ・ヨト

ECNU

XUE XUN

coupling between scalar and gauge field

$$L = (N^{\mu} j_{\mu})^{s+2A} \left[(1 - A^2)^{-(1+A)} (D_{\mu} \phi^* D^{\mu} \phi)^{1+A} (N^{\mu} j_{\mu})^{-2A} - \frac{a+2A+s}{1+A+s} m^2 (\phi^* \phi)^{1+n\sqrt{A}} \right] + \left(\frac{F_{\mu\nu} F^{\mu\nu}}{4(1-A^2)} \right) (N^{\mu} A^{\nu} F_{\nu\mu})^{4A}$$

coupling between spinor and gauge field

$$L = \left(N_{\mu}\bar{\psi}\gamma^{\mu}\psi\right)^{s} \left\{ \left[\frac{i}{2}\left(\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - \partial_{\mu}\bar{\psi}\gamma^{\mu}\psi\right)\right]^{1+n\sqrt{A}} - M\left(\bar{\psi}\psi\right)^{1+2n\sqrt{A}} \left(\frac{N_{\mu}\bar{\psi}\gamma^{\mu}\psi}{\bar{\psi}\psi}\right)^{A} \right\} + \left(\frac{F_{\mu\nu}F^{\mu\nu}}{4(1-A^{2})}\right) \left(N^{\mu}A^{\nu}F_{\nu\mu}\right)^{4A}$$

the action for electromagnetic coupling of point particle is

$$S = \int_{\tau_1}^{\tau_2} \left[mF(V^{\mu}) + eV^{\mu}A_{\mu} \right] d\tau + \int \left(\frac{F_{\mu\nu}F^{\mu\nu}}{4(1-A^2)} \right) \left(N^{\mu}A^{\nu}F_{\nu\mu} \right)^{4A} dV$$

・ロト ・回ト ・ヨト ・ヨト

ECNU

XUE XUN

The field theory of deformed very special relativity

- fields exhibit rescale effect in some specific Finsler spacetime
- ▶ Field can get an effective mass in some ISO(3) spacetime
- the effective mass depends on direction in TE(2) spacetime-the anisotropy

(日) (同) (三) (

Conclusion

- obtained various of deformed Poincaré subgroups and their natural representations
- obtained the spacetime metric function corresponding to various of semi-direct product Poincaré subgroups and their deform partner
- obtained the field theory in various of spacetime with semi-direct product Poincaré subgroups and their deform partner symmetry

Image: A math a math

Thanks for your attention!

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ECNU

-

XUE XUN