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Utilizing the free Polyakov action of open p-brane, we obtain the solution of satisfying the boundary
conditions to Euler–Lagrange equation of the open p-brane, the first and second quantization theories
of the p-brane are given. Further, we obtain a series of new multiple commutative relations between
the different normal modes of the p-brane, obtain the new lowering and raising multiple operators,
and give a series of the new fundamental multiple commutative relations of the lowering and raising
multiple operators in the state space. And then we mainly take p = 3 case for example to investigate
the spectrum of the open 3-brane at different levels. Interestingly, we find three types of tachyon states
including scalar states, vector states and 2-rank tensor states, respectively. Besides, the graviton fields,
Kalb–Ramond fields, dilaton and photon states, 3-rank tensor states as well, appear at the same level
in the open 3-brane model. For the spectrum of the p-brane (p > 3), one can do the whole analogous
research on p = 3 except more complex.

© 2011 Published by Elsevier B.V.

1. Introduction

String theory has been probably providing the most promising
descriptions of nature, especially the realizations of spectra of par-
ticles in Standard Model. Besides, some kind of particles of spin
two was assigned to gravitons [1–4]. On the analogy with particles,
the dynamical properties of strings are described by Nambu–Goto
action [5], given in terms of the area of string worldsheet. By in-
volving an auxiliary worldsheet metric, it can also be replaced
by a classically equivalent action, called Polyakov action with lo-
cal conformal symmetries [6]. In contrast with the non-polynomial
Nambu–Goto action the new action is quadratic in the derivatives
of the coordinates. Some authors have investigated the connections
between the two kinds of actions by introducing the interpolating
actions [7–9].

Starting with the Letter of Kikkawa and Yamasaki [10], we
have had an increasing interest in the theory of (two and more)-
dimensional extended objects (membranes and p-brane) as uni-
fied theories containing non-abelian excitations [11]. The high-
dimensional objects that motivated recent progress in string theory
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are extended structures embedded in a higher-dimensional space-
time from which it inherits an induced metric [12–15]. Over the
last decade string theory has been gradually replaced by M-theory
as the natural candidate for a fundamental description of nature.
While a complete definition of M-theory is yet to be given, it is
believed that the five perturbatively consistent string theories are
different phases of this theory. Indeed it is known that membrane
and five-brane occur naturally in eleven-dimensional supergrav-
ity, which is argued to be the low-energy limit of M-theory. Also,
string theory is effectively described by the low-energy dynam-
ics of a system of branes. For instance, the membrane of M-theory
may be “wrapped” around the compact direction of radius R to be-
come the fundamental string of type-IIA string theory, in the limit
of vanishing radius [16–22]. A fundamental type-IIB string can be
thought of as an M2-brane wrapped around x10.

Ref. [22] gives the scheme of Dirac quantization of open p-
brane in the D-brane background. In Ref. [23], we had discussed
the quantization and spectrum of open 2-brane, from which we
had seen more contents appeared than string case, especially the
appearance of two types of tachyon states. In this Letter, we gen-
eralize the results to higher extended objects such as 3-brane
and p-brane. As before, we also mainly work in 26-dimensional
Minkowski spacetime, the arrangement is: Section 2 is the solu-
tion to Euler–Lagrange equation of p-brane and its quantization;
Section 3 is the discussions on the second quantization of the
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p-brane; in Section 4, we give Hamiltonian of the open 3-brane
and deduce its representation in terms of normal modes; in Sec-
tion 5, we define the vacuum state and get a series of excited
states by acting the raising operators on it and discuss some lower
levels. Section 6 is summary and conclusion.

2. The solution to Euler–Lagrange equation of p-brane and its
quantization

An open p-brane is a p-dimensional object which sweeps out a
(p +1)-dimensional world volume parameterized by τ ,σ 1, . . . , σ p .
And these parameters are collectively referred as ξi (i = 0,1,2,

. . . , p). Then Polyakov action for the p-brane is given by [7]

S P = − 1

4πα′

∫
dp+1ξ

√
−h

[
hab∂a Xμ∂b Xμ − (p − 1)

]
, (1)

where h = det |hab|. It is well known that Eq. (1) is equivalent
to Nambu–Goto action of the p-brane, and there are other la-
grangian formalisms of p-branes, which do not require the fine
tunned cosmological term [24]. Because h = hab�ab , hab = �ba/h,
we have [1,2]

δh = −hhabδhab, (2)

δ
√

−h = −1

2

√
−hhabδhab, (3)

δ
(√−hhcd) =

√
−h

(
δhcd − 1

2
habhcdδhab

)
. (4)

Let γab = ∂a Xμ∂b Xμ , Euler–Lagrange equation for hab

δS

δhab
− ∂c

δS

δ(∂chab)
= 0 (5)

gives

δS

δhab
= −

√−h

2πα′

{
γab − 1

2
habhcdγcd + p − 1

2
hab

}
= 0. (6)

Define the energy–momentum tensor as

Tab = −2πα′
√−h

δS

δhab
= γab − 1

2
habhcdγcd + p − 1

2
hab. (7)

Because quantization of gravity field cannot very well be fin-
ished up to now, without losing the character of the open p-
brane second quantization, we can choose the metric hab as
(−,+,+, . . . ,+), then we have

T00 = 1

2
(γ00 + γ11 + γ22 + · · · + γpp − p + 1) = 0, (8)

T11 = 1

2
(γ00 + γ11 − γ22 − · · · − γpp + p − 1) = 0, (9)

T22 = 1

2
(γ00 − γ11 + γ22 − · · · − γpp + p − 1) = 0, (10)

...

T pp = 1

2
(γ00 − γ11 − γ22 − · · · + γpp + p − 1) = 0. (11)

Eq. (8) indicates that the Hamiltonian of p-brane system van-
ishes, which we will discuss later. Eqs. (9)–(11) may be viewed
constraint equations.

The Euler–Lagrange equation for Xμ can be derived from the
variational principle as follows(

∂2
τ −

p∑
i=1

∂2
i

)
Xμ

(
τ ,σ 1,σ 2, . . . , σ p) = 0 (12)

with the Neumann boundary conditions

∂i Xμ
(
τ ,σ 1, . . . , σ p)∣∣

σ i=0 = ∂i Xμ
(
τ ,σ 1, . . . , σ p)∣∣

σ i=π
= 0

(i = 1,2, . . . , p). (13)

On the other hand, because general physical processes should
satisfy quantitative causal relation [25,26], some changes (cause) of
some quantities in Eq. (12) must lead to the relative some changes
(result) of the other quantities in Eq. (12) so that Eq. (12)’s right
side keeps no-loss-no-gain, i.e., zero, namely, Eq. (12) also satisfies
the quantitative causal relation, which just makes X I relative to
(τ ,σ 1, σ 2, . . . , σ p) to form a coupling physical system of different
variables.

The canonical momenta for canonical variables Xμ are defined
as

Pμ = ∂L
∂ Ẋμ

= 1

2πα′ Ẋμ. (14)

Therefore, we find out the solution satisfying the boundary condi-
tions to the Euler–Lagrange equation as follows

X0 = x0

π
(p−1)

2

+ 2α′p0

π
(p−1)

2

τ , X1 = x1

π
(p−1)

2

+ 2α′p1

π
(p−1)

2

τ , (15)

X I(τ ,σ 1, . . . , σ p)

= xI + 2α′pIτ

π
(p−1)

2

+ i
√

2α′
+∞∑

n1,...,np=0

( p∑
i=1

n2
i

)−1
4

× (
X I

n1n2···np
e

iτ
√∑p

i=1 n2
i − (

X I
n1n2···np

)†
e
−iτ

√∑p
i=1 n2

i
)

×
p∏

i=1

cosniσ
i, (16)

P J (τ ,σ 1, . . . , σ p)

= 1

π

[
p J

π
(p−1)

2

+
√

2

α′
+∞∑

n1,n2,...,np=0

( p∑
i=1

n2
i

) 1
4

× ((
P J

n1n2···np

)†
e

iτ
√∑p

i=1 n2
i + P J

n1n2···np e
−iτ

√∑p
i=1 n2

i
)

×
p∏

i=1

cosniσ
i

]
, (17)

where we have fixed the first two directions of the solution by two
constraints of Eqs. (9)–(11), i.e. Eq. (15), which may make us able
to gain reasonable spectrum of lower energy levels. And we have
introduced (X I

n1n2···np
)† and (P J

n1n2···np )
† as Hermitian operators for

X I
n1n2···np

and P J
n1n2···np , respectively, in order to guarantee the Her-

miticity of X I (τ ,σ 1, . . . , σ p) and P I (τ ,σ 1, . . . , σ p), and {ni} can-
not be zero simultaneously. Now there are still p − 2 constraints
left, which will restrict the p-brane on the (D − p +2)-dimensional
hypersurface in D-dimensional Minkowski spacetime for p � 2. In
this sense, we can conclude that D − p + 2 � p + 1, i.e., p � D+1

2 .
Using (14), (16) and (17), we set up the following relations

X I
n1n2···np

= −2
(

P I
n1n2···np

)†; (
X I

n1n2···np

)† = −2P I
n1n2···np

. (18)

In order to determinate the commutative relations, we must
calculate the commutative relations of X I (τ ,σ 1, . . . , σ p) and
P J (τ ,σ 1, . . . , σ p) basing on the Delta function as [3]

δ
(
σ − σ ′) = 1

π

(
1 + 2

+∞∑
n=1

cosnσ cosnσ ′
)

, (19)
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and in terms of the general rule of the standard quantization, we
should take[

X I(τ ,σ 1, . . . , σ p)
, P J (τ ,σ ′1, . . . , σ ′ p)]

= iη I J δ
(
σ 1 − σ ′1) · · · δ(σ p − σ ′ p)

. (20)

Substituting Eqs. (16), (17), (19) into Eq. (20) and using Eq. (18),
we deduce a series of new multiple commutative relations be-
tween the normal modes as follows[

X I
n1n2n3···np−1np

, P J
m1m2m3···mp−1mp

]
= 2p−2

π p−1
η I J δn1m1δn2m2δn3m3 · · · δnp−1mp−1δnpmp , (21)[

X I
0n2n3···np−1np

, P J
0m2m3···mp−1mp

]
= 2p−3

π p−1
η I J δn2m2δn3m3 · · · δnp−1mp−1δnpmp , (22)

...[
X I

00n3···np−1np
, P J

00m3···mp−1mp

]
= 2p−4

π p−1
η I J δn3m3 · · · δnp−1mp−1δnpmp , (23)

...[
X I

00···np−1np
, P J

00···mp−1mp

] = 1

π p−1
η I J δnp−1mp−1δnpmp , (24)

...[
X I

00···0np
, P J

00···0mp

] = 1

2π p−1
η I J δnpmp , (25)

for ni,mi > 0, where the first “· · ·” means that only one of {ni}
is zero, and they have the similar commutative relations with
Eq. (22). The second “· · ·” means that only two of {ni} are zero,
which have the similar commutative relations with Eq. (23). Fur-
ther, the same procedure can be used for the other “· · ·”, and the
commutative relations of the other forms are zero.

3. The second quantization of the open p-brane

Now we need to generalize the discussions of the usual second
quantization to p-brane and to continue finishing the second quan-
tization in Section 2, i.e., we further give the second quantization
of the p-brane, namely, we use Eqs. (21)–(25) and the discussions
after Eq. (25) in Section 2 to construct the lowering and raising
multiple operators in the state space as φ I

n1
⊗φ I

n2
⊗· · ·⊗φ I

np
, φ

J †
m1 ⊗

φ
J†

m2 ⊗· · ·⊗φ
J†

mp , and then we obtain a series of the new fundamen-
tal multiple commutative relations of corresponding Eqs. (21)–(25)
as follows[
φ I

n1
⊗ φ I

n2
⊗ · · · ⊗ φ I

np
, φ

J †
m1 ⊗ φ

J †
m2 ⊗ · · · ⊗ φ

J †
mp

]
= η I J δn1m1 ⊗ δm2m2 ⊗ · · · ⊗ δnpmp ,[

φ I
n1

⊗ φ I
n2

⊗ · · · ⊗ φ I
np

,φ
J

m1 ⊗ φ
J

m2 ⊗ · · · ⊗ φ
J

mp

] = 0,[
φ

I†
n1 ⊗ φ

I†
n2 ⊗ · · · ⊗ φ

I†
np , φ

J †
m1 ⊗ φ

J †
m2 ⊗ · · · ⊗ φ

J †
mp

] = 0;[
φ I

0 ⊗ φ I
n2

⊗ · · · ⊗ φ I
np

, φ
J †

0 ⊗ φ
J †

m2 ⊗ · · · ⊗ φ
J †

mp

]
= η I J δm2m2 ⊗ · · · ⊗ δnpmp ,[

φ I
0 ⊗ φ I

n2
⊗ · · · ⊗ φ I

np
, φ

J
0 ⊗ φ

J
m2 ⊗ · · · ⊗ φ

J
mp

] = 0,[
φ

I†
0 ⊗ φ

I†
n2 ⊗ · · · ⊗ φ

I†
np , φ

J †
0 ⊗ φ

J †
m2 ⊗ · · · ⊗ φ

J †
mp

] = 0;

...[
φ I

0 ⊗ φ I
0 ⊗ · · · ⊗ φ I

0 ⊗ φ I
np

, φ
J †

0 ⊗ φ
J †

0 ⊗ · · · ⊗ φ
J †

0 ⊗ φ
J †

mp

]
= η I J δnpmp ,[

φ I
0 ⊗ · · · ⊗ φ I

0 ⊗ φ I
np

, φ
J

0 ⊗ · · · ⊗ φ
J

0 ⊗ φ
J

mp

] = 0,[
φ

I†
0 ⊗ · · · ⊗ φ

I†
0 ⊗ φ

I†
np , φ

J †
0 ⊗ · · · ⊗ φ

J †
0 ⊗ φ

J †
mp

] = 0; (26)

where we have used the generalized expressions of Eq. (29) below
for the p-brane (the concretely deducing process of the general-
ized expressions see Appendix A). Therefore, we have continued
to do the second quantization and finished the second quantiza-
tion of the open p-brane. In Section 2, we have given the first
quantization of the open p-brane by finding out the solution of
satisfying the boundary conditions to the Euler–Lagrange equation
(12). The set (26) of the fundamental multiple commutative re-
lations of corresponding Eqs. (21)–(25) are a series of the new
fundamental multiple commutative relations of the lowering and
raising multiple operators in the state space, which cannot be got
before.

In order to show both wave properties and extended object
(for p = 0, particle) properties of the open p-brane, we, in Sec-
tion 2, have given the operatorization of the wave function of the
open p-brane, i.e., making the Fourier expanding coefficient be-
came the multiple lowering and raising operators, and the second
quantization of the canonical variables requires a kind of multiple
commutative relations (26) between the normal modes, which is
important to construct the spectrum of the open p-brane.

Not losing the general property of the research of this Letter,
and to avoid to be too lengthy for the equations, we will concretely
take p = 3 case for example, finish and see what kind of contents
of the spectrum appear in the following sections. For the spectra
of the p-brane (p > 3), one can do the whole analogous research
on p = 3 except more complex.

4. Hamiltonian of the open 3-brane and its representation in the
second quantization theory

In order to obtain the mass-squared operators, we must cal-
culate the Hamiltonian in terms of the raising and lowering op-
erators. The Hamiltonian of the 3-brane can be derived from the
Polyakov action (1) for p = 3 as follows

H =
π∫

0

dσ 1

π∫
0

dσ 2

π∫
0

dσ 3 (
Pμ Ẋμ −L)

. (27)

Here, different from the string case, there is an extra cosmolog-
ical constant term, which is proportional to 1

α′ . In the zero slope
limit, this term will be very large because of α′ ∼ 2 ∼ 10−66 cm,
and then we can omit this term as the contributions of background
fields.

Substituting Eqs. (15) and (16) into the Hamiltonian, we obtain
the total Hamiltonian for the 3-brane in terms of normal modes as
follows

4πα′H = 2α′π3ηI J

+∞∑
n=1

n
[(

X I
n00

)†
X J

n00 + X I
n00

(
X J

n00

)†]

+ 2α′π3ηI J

+∞∑
m=1

m
[(

X I
0m0

)†
X J

0m0 + X I
0m0

(
X J

0m0

)†]

+ 2α′π3ηI J

+∞∑
l=1

l
[(

X I
00l

)†
X J

00l + X I
00l

(
X J

00l

)†]
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+ α′π3ηI J

+∞∑
n,m=1

(
n2 + m2) 1

2

× [(
X I

nm0

)†
X J

nm0 + X I
nm0

(
X J

nm0

)†]
+ α′π3ηI J

+∞∑
n,l=1

(
n2 + l2

) 1
2

× [(
X I

n0l

)†
X J

n0l + X I
n0l

(
X J

n0l

)†]
+ α′π3ηI J

+∞∑
m,l=1

(
m2 + l2

) 1
2

× [(
X I

0ml

)†
X J

0ml + X I
0ml

(
X J

0ml

)†]
+ α′π3

2
ηI J

+∞∑
n,m,l=1

(
n2 + m2 + l2

) 1
2

× [(
X I

nml

)†
X J

nml + X I
nml

(
X J

nml

)†]
+ 4πα′2 p2. (28)

Now we use Eqs. (21)–(25) to construct the raising and lower-
ing multiple operators in the case of p = 3

⎧⎪⎨
⎪⎩

X I
nml = 2

π
φ

I†
n ⊗ φ

I†
m ⊗ φ

I†
l ,

(
X I

nml

)† = 2

π
φ I

n ⊗ φ I
m ⊗ φ I

l ,⎧⎪⎪⎨
⎪⎪⎩

X I
0ml =

√
2

π
φ

I†
0 ⊗ φ

I†
m ⊗ φ

I†
l ,

(
X I

0ml

)† =
√

2

π
φ I

0 ⊗ φ I
m ⊗ φ I

l ,⎧⎪⎪⎨
⎪⎪⎩

X I
n0l =

√
2

π
φ

I†
n ⊗ φ

I†
0 ⊗ φ

I†
l ,

(
X I

n0l

)† =
√

2

π
φ I

n ⊗ φ I
0 ⊗ φ I

l ,⎧⎪⎪⎨
⎪⎪⎩

X I
nm0 =

√
2

π
φ

I†
n ⊗ φ

I†
m ⊗ φ

I†
0 ,

(
X I

nm0

)† =
√

2

π
φ I

n ⊗ φ I
m ⊗ φ I

0,⎧⎪⎨
⎪⎩

X I
n00 = 1

π
φ

I†
n ⊗ φ

I†
0 ⊗ φ

I†
0 ,

(
X I

n00

)† = 1

π
φ I

n ⊗ φ I
0 ⊗ φ I

0,⎧⎪⎨
⎪⎩

X I
0m0 = 1

π
φ

I†
0 ⊗ φ

I†
m ⊗ φ

I†
0 ,

(
X I

0m0

)† = 1

π
φ I

0 ⊗ φ I
m ⊗ φ I

0,⎧⎪⎨
⎪⎩

X I
00l = 1

π
φ

I†
0 ⊗ φ

I†
0 ⊗ φ

I†
l ,

(
X I

00l

)† = 1

π
φ I

0 ⊗ φ I
0 ⊗ φ I

l ,

(29)

where we have used Eq. (18). Using the on-shell conditions: P 2 =
−M2, we have

H = ηI J

+∞∑
n=1

n

[[
φ

I†
n ⊗ φ

I†
0 ⊗ φ

I†
0

][
φ

J
n ⊗ φ

J
0 ⊗ φ

J
0

] + 1

2
η I J

]

+ ηI J

+∞∑
m=1

m

[[
φ

I†
0 ⊗ φ

I†
m ⊗ φ

I†
0

][
φ

J
0 ⊗ φ

J
m ⊗ φ

J
0

] + 1

2
η I J

]

+ ηI J

+∞∑
l=1

l

[[
φ

I†
0 ⊗ φ

I†
0 ⊗ φ

I†
l

][
φ

J
0 ⊗ φ

J
0 ⊗ φ

J
l

] + 1

2
η I J

]

+ ηI J

+∞∑
n,m=1

(
n2 + m2) 1

2

[[
φ

I†
n ⊗ φ

I†
m ⊗ φ

I†
0

]

× [
φ

J
n ⊗ φ

J
m ⊗ φ

J
0

] + 1

2
η I J

]

+ ηI J

+∞∑
n,l=1

(
n2 + l2

) 1
2

[[
φ

I†
n ⊗ φ

I†
0 ⊗ φ

I†
l

]

× [
φ

J
n ⊗ φ

J
0 ⊗ φ

J
l

]+1

2
η I J

]

+ ηI J

+∞∑
m,l=1

(
m2 + l2

) 1
2

[[
φ

I†
0 ⊗ φ

I†
m ⊗ φ

I†
l

]

× [
φ

J
0 ⊗ φ

J
m ⊗ φ

J
l

]+1

2
η I J

]

+ ηI J

+∞∑
n,m,l=1

(
n2 + m2 + l2

) 1
2

[[
φ

I†
n ⊗ φ

I†
m ⊗ φ

I†
l

]

× [
φ

J
n ⊗ φ

J
m ⊗ φ

J
l

]+1

2
η I J

]

+ α′p2

= N1 + N2 + N3 + N12 + N23 + N13

+ N123 + 3a

2
+ 3b

2
+ c

2
− α′M2, (30)

where

N1 = ηI J

+∞∑
n=1

n
[
φ

I†
n ⊗ φ

I†
0 ⊗ φ

I†
0

][
φ

J
n ⊗ φ

J
0 ⊗ φ

J
0

]
, (31)

N2 = ηI J

+∞∑
m=1

m
[
φ

I†
0 ⊗ φ

I†
m ⊗ φ

I†
0

][
φ

J
0 ⊗ φ

J
m ⊗ φ

J
0

]
, (32)

N3 = ηI J

+∞∑
l=1

l
[
φ

I†
0 ⊗ φ

I†
0 ⊗ φ

I†
l

][
φ

J
0 ⊗ φ

J
0 ⊗ φ

J
l

]
, (33)

N12 = ηI J

+∞∑
n,m=1

(
n2 + m2) 1

2
[
φ

I†
n ⊗ φ

I†
m ⊗ φ

I†
0

]

× [
φ

J
n ⊗ φ

J
m ⊗ φ

J
0

]
, (34)

N23 = ηI J

+∞∑
m,l=1

(
m2 + l2

) 1
2
[
φ

I†
0 ⊗ φ

I†
m ⊗ φ

I†
l

]

× [
φ

J
0 ⊗ φ

J
m ⊗ φ

J
l

]
, (35)

N13 = ηI J

+∞∑
n,l=1

(
n2 + l2

) 1
2
[
φ

I†
n ⊗ φ

I†
0 ⊗ φ

I†
l

]

× [
φ

J
n ⊗ φ

J
0 ⊗ φ

J
l

]
, (36)

N123 = ηI J

+∞∑
n,m,l=1

(
n2 + m2 + l2

) 1
2
[
φ

I†
n ⊗ φ

I†
m ⊗ φ

I†
l

]
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× [
φ

J
n ⊗ φ

J
m ⊗ φ

J
l

]
, (37)

a = η I
I

+∞∑
n=1

n = (D − 2)

+∞∑
n=1

n, (38)

b = η I
I

+∞∑
n,m=1

√
n2 + m2 = (D − 2)

+∞∑
n,m=1

√
n2 + m2, (39)

c = (D − 2)

+∞∑
n,m,l=1

√
n2 + m2 + l2. (40)

Without involving Fermi fields, and in the limit of contracting to
zero of two spacial dimensions of the 3-brane, the 3-brane system
should be reduced to string case, then we can choose the space-
time dimensional number 26, and use the Riemann Zeta function

ζ(−1) =
∑

n

n = − 1

12
, (41)

then we have

a = (D − 2)

+∞∑
n=1

n = − (D − 2)

12
= −2. (42)

However, the number b and c are still infinity, and we have to
remove them by viewing them as the effects of background fields
or the vacuum zero point energies.

Thus, we give both Hamiltonian of the open 3-brane and the its
representation in terms of normal modes.

5. Spectrum of the open 3-brane in the second quantization
theory

Just as what we have pointed out from Eq. (8), the Hamiltonian
of the 3-brane system vanishes. Besides, Refs. [7–9] investigated
the connections between Nambu–Goto action and Polyakov action
by introducing the interpolating actions. Because of the internal
constraints in phase space, one can find that the canonical Hamil-
tonian vanishes, and the total Hamiltonian would be made up of
internal constraints. So we can set the Hamiltonian to be zero, and
then the mass-squared operator is

α′M2 = N1 + N2 + N3 + N12 + N23 + N13 + N123 + 3a

2
= N1 + N2 + N3 + N12 + N23 + N13 + N123 − 3. (43)

The vacuum state |0,0,0〉 ≡ |0〉 ⊗ |0〉 ⊗ |0〉 is defined to be annihi-
lated by the lowering operators for n,m, l � 0

φn ⊗ φm ⊗ φl|0,0,0〉 = 0, (44)

where n,m and l cannot be zero simultaneously.
In general, a basis for the Fock space states can be taken of the

form with the raising operators

|λ,κ,χ 〉 =
∏

ni ,mi ,li ,I

{
φ

I†
ni

⊗ φ
I†
mi

⊗ φ
I†
li

}|0,0,0〉, (45)

where
∑

n =λ,
∑

m =κ and
∑

l =χ . Because the mass-squared
operator is symmetrical with respect to n,m and l in Eq. (43), the
states |λ,κ,χ 〉, |κ,λ,χ 〉 and |κ,χ,λ〉 must have the same mass-
square.

Now, let us see how this works for the first some levels of the
open 3-brane in flat spacetime by removing the contributions of
background fields.

At the lowest mass level, the only state is |0,0,0〉, which means
N1 = N2 = N3 = N12 = N23 = N13 = N123 = 0. Then the mass-
squared operator can be calculated

α′M2 = N1 + N2 + N3 + N12 + N23 + N13 + N123 − 3

= −3. (46)

Obviously, it is a tachyon state.
At the next level there are three kinds of excited states corre-

sponding to⎧⎨
⎩

n = 1,

m = 0,

l = 0,

⎧⎨
⎩

n = 0,

m = 1,

l = 0,

⎧⎨
⎩

n = 0,

m = 0,

l = 1,

(47)

respectively

|1,0,0〉 = r(1)
I

(
φ

I†
1 ⊗ φ

I†
0 ⊗ φ

I†
0

)|0,0,0〉, (48)

|0,1,0〉 = s(1)
I

(
φ

I†
0 ⊗ φ

I†
1 ⊗ φ

I†
0

)|0,0,0〉, (49)

|0,0,1〉 = t(1)
I

(
φ

I†
0 ⊗ φ

I†
0 ⊗ φ

I†
1

)|0,0,0〉. (50)

The mass-squared operators can be calculated as α′M2
r = N1 +

N2 + N3 + N12 + N23 + N13 + N123 − 3 = −2. Similarly

M2
r = M2

s = M2
t = − 2

α′ . (51)

Obviously, they are still the tachyon states with the same mass-
square.

The next level is the second excited states, and there are six
kinds of states

|2,0,0〉1 = r(2)
I J

(
φ

I†
1 ⊗ φ

I†
0 ⊗ φ

I†
0

)(
φ

J †
1 ⊗ φ

J †
0 ⊗ φ

J †
0

)|0,0,0〉, (52)

|2,0,0〉2 = r(2)
I

(
φ

I†
2 ⊗ φ

I†
0 ⊗ φ

I†
0

)|0,0,0〉, (53)

|0,2,0〉1 = s(2)
I J

(
φ

I†
0 ⊗ φ

I†
1 ⊗ φ

I†
0

)(
φ

J †
0 ⊗ φ

J †
1 ⊗ φ

J †
0

)|0,0,0〉, (54)

|0,2,0〉2 = s(2)
I

(
φ

I†
0 ⊗ φ

I†
2 ⊗ φ

I†
0

)|0,0,0〉, (55)

|0,0,2〉1 = t(2)
I J

(
φ

I†
0 ⊗ φ

I†
0 ⊗ φ

I†
1

)(
φ

J †
0 ⊗ φ

J †
0 ⊗ φ

J †
1

)|0,0,0〉, (56)

|0,0,2〉2 = t(2)
I

(
φ

I†
0 ⊗ φ

I†
0 ⊗ φ

I†
2

)|0,0,0〉. (57)

The mass-squared operators can be calculated as α′M2
r = N1 +

N2 + N3 + N12 + N23 + N13 + N123 − 3 = −1. Similarly

α′M2
r = α′M2

s = α′M2
t = −1. (58)

Now let us discuss these 2-rank tachyon states. We will take the
states |2,0,0〉i (i = 1,2) for example. Here r(2)

I J can be viewed as
the elements of an arbitrary square matrix of size D − 2. Accord-
ing to the irreducible representation theory in the group theory,
any square matrix can be decomposed into its traceless symmetric
part, its antisymmetric part and a multiple of the unit matrix,

r(2)
I J = Ŝ I J + AI J + δI J S ′, (59)

where Ŝ I J denotes the traceless symmetric part of r(2)
I J , and AI J

denotes the antisymmetric part of r(2)
I J , and S ′ the trace of r(2)

I J .
Then the states can be decomposed into the following forms

Ŝ I J
(
φ

I†
1 ⊗ φ

I†
0 ⊗ φ

I†
0

)(
φ

J †
1 ⊗ φ

J †
0 ⊗ φ

J †
0

)|0,0,0〉, (60)

AI J
(
φ

I†
1 ⊗ φ

I†
0 ⊗ φ

I†
0

)(
φ

J †
1 ⊗ φ

J †
0 ⊗ φ

J †
0

)|0,0,0〉, (61)

S ′(φ I†
1 ⊗ φ

I†
0 ⊗ φ

I†
0

)(
φ

†
1I ⊗ φ

†
0I ⊗ φ

†
0I

)|0,0,0〉. (62)
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So far, we have found all the tachyon states of the open 3-brane,
where there are two kinds of scalar tachyon states coming from
the usual ground states and the second excited states, respectively.
Besides, we obtain other types of tachyon states, including the first
excited states which associate with three kinds of vector states,
and the second exited states which associate with symmetric and
antisymmetric 2-rank tensor states. In string theory, a series of de-
velopments starting in 1999 have essentially elucidated the role
of the open string tachyon. And the presence of tachyon indicates
instability of open string theory. More precisely, there is some in-
stability in the theory of open string on the background of a space-
filling D25-brane. For a quite few years, superstring theories, the
kind of string theories that also include fermions, seemed blessedly
devoid of tachyons. Later studies, however, showed that tachyons
can appear when we construct realistic models based on super-
strings. In 3-brane model, we find that there are tachyon states,
including not only scalar states, but vector states and tensor states,
appearing.

The next level is the third excited states, and there are nine
kinds of states

|3,0,0〉1 = r(3)
I

(
φ

I†
3 ⊗ φ

I†
0 ⊗ φ

I†
0

)|0,0,0〉, (63)

|3,0,0〉2 = r(3)
I J

(
φ

I†
2 ⊗ φ

I†
0 ⊗ φ

I†
0

)(
φ

J †
1 ⊗ φ

J †
0 ⊗ φ

J †
0

)|0,0,0〉, (64)

|3,0,0〉3 = r(3)
I J K

(
φ

I†
1 ⊗ φ

I†
0 ⊗ φ

I†
0

)(
φ

J †
1 ⊗ φ

J †
0 ⊗ φ

J †
0

)
(
φ

K †
1 ⊗ φ

K †
0 ⊗ φ

K †
0

)|0,0,0〉, (65)

|0,3,0〉1 = s(3)
I

(
φ

I†
0 ⊗ φ

I†
3 ⊗ φ

I†
0

)|0,0,0〉, (66)

|0,3,0〉2 = s(3)
I J

(
φ

I†
0 ⊗ φ

I†
2 ⊗ φ

I†
0

)(
φ

J †
0 ⊗ φ

J †
1 ⊗ φ

J †
0

)|0,0,0〉, (67)

|0,3,0〉3 = s(3)
I J K

(
φ

I†
0 ⊗ φ

I†
1 ⊗ φ

I†
0

)(
φ

J †
0 ⊗ φ

J †
1 ⊗ φ

J †
0

)
(
φ

K †
0 ⊗ φ

K †
1 ⊗ φ

K †
0

)|0,0,0〉, (68)

|0,0,3〉1 = t(3)
I

(
φ

I†
0 ⊗ φ

I†
0 ⊗ φ

I†
3

)|0,0,0〉, (69)

|0,0,3〉2 = t(3)
I J

(
φ

I†
0 ⊗ φ

I†
0 ⊗ φ

I†
2

)(
φ

J †
0 ⊗ φ

J †
0 ⊗ φ

J †
1

)|0,0,0〉, (70)

|0,0,3〉3 = t(3)
I J K

(
φ

I†
0 ⊗ φ

I†
0 ⊗ φ

I†
1

)(
φ

I†
0 ⊗ φ

I†
0 ⊗ φ

I†
1

)
(
φ

I†
0 ⊗ φ

I†
0 ⊗ φ

I†
1

)|0,0,0〉. (71)

Now we have α′M2
r = N1 + N2 + N3 + N12 + N23 + N13 + N123 −

3 = 0. Similarly

α′M2
r = α′M2

s = α′M2
t = 0. (72)

Now, we can deal with the 2-rank massless states Eq. (64) in
the same way as Eq. (59). Then we have the following forms

Ŝ I J
(
φ

I†
2 ⊗ φ

I†
0 ⊗ φ

I†
0

)(
φ

J †
1 ⊗ φ

J †
0 ⊗ φ

J †
0

)|0,0,0〉, (73)

AI J
(
φ

I†
2 ⊗ φ

I†
0 ⊗ φ

I†
0

)(
φ

J †
1 ⊗ φ

J †
0 ⊗ φ

J †
0

)|0,0,0〉, (74)

S ′(φ I†
2 ⊗ φ

I†
0 ⊗ φ

I†
0

)(
φ

†
1I ⊗ φ

†
0I ⊗ φ

†
0I

)|0,0,0〉. (75)

By analogy with the closed bosonic string theory, Eq. (73) rep-
resents one-particle graviton states; Eq. (74) corresponds to the
one-particle states of Kalb–Ramond fields; Eq. (75) has no free in-
dices, so it represents one scalar state called dilaton state. While
the states |3,0,0〉1 simply represent the massless vector states,
which can be related to the photon states. Different from the 2-
brane model [23], |3,0,0〉3 denote 3-rank tensor states, and we
can construct totally symmetric and totally antisymmetric 3-rank
massless tensor states S I J K and AI J K . The same procedure can
be practiced to the states |0,3,0〉i and |0,0,3〉i (i = 1,2,3). So
we have three sets of spectra of massless states resulted from the

symmetric directions of σ 1, σ 2 and σ 3. Here we also find more
massless states than string case, especially 3-rank, 2-rank tensor
states, vector states and scalar states all have been produced at
the same level.

Then we consider the first massive level, which has six kinds of
excited states

|1,1,0〉1 = r(4)
I

(
φ

I†
1 ⊗ φ

I†
1 ⊗ φ

I†
0

)|0,0,0〉, (76)

|1,1,0〉2 = r(4)
I J

(
φ

I†
1 ⊗ φ

I†
0 ⊗ φ

I†
0

)(
φ

J †
0 ⊗ φ

J †
1 ⊗ φ

J †
0

)|0,0,0〉, (77)

|1,0,1〉1 = s(4)
I

(
φ

I†
1 ⊗ φ

I†
0 ⊗ φ

I†
1

)|0,0,0〉, (78)

|1,0,1〉2 = s(4)
I J

(
φ

I†
1 ⊗ φ

I†
0 ⊗ φ

I†
0

)(
φ

J †
0 ⊗ φ

J †
0 ⊗ φ

J †
1

)|0,0,0〉, (79)

|0,1,1〉1 = t(4)
I

(
φ

I†
0 ⊗ φ

I†
1 ⊗ φ

I†
1

)|0,0,0〉, (80)

|0,1,1〉2 = t(4)
I J

(
φ

I†
0 ⊗ φ

I†
1 ⊗ φ

I†
0

)(
φ

J †
0 ⊗ φ

J †
0 ⊗ φ

J †
1

)|0,0,0〉, (81)

then we have the mass-squared operator as

α′M2
r = N1 + N2 + N3 + N12 + N23 + N13 + N123 − 3

= 1 + 1 + 0 + √
2 + 0 + 0 + 0 + (−3) = √

2 − 1, (82)

and similarly

α′M2
s = α′M2

t = √
2 − 1. (83)

They belong to the first massive level, including vector states,
2-rank traceless tensor states and scalar states. Now we have ob-
tained some lower levels of Fock states. In these levels, tachyon
states, massless states and massive states all appeared, then we
find that there are more fruitful contents than the string case.

By comparing the results obtained above with the 2-brane
case [23], we can conclude that higher rank tensor states will
appear at lower level when the higher-dimensional objects con-
sidered.

6. Summary and conclusion

In this Letter, we have given the first and second quantiza-
tion theories and the spectra of the open p-brane from the free
Polyakov action. According to the Euler–Lagrange equation and the
Neumann boundary conditions, we have gained the solution to the
equation by analogy with the string case. Further, we not only
deduce a series of new multiple commutative relations between
the different normal modes of the p-brane, which cannot be ob-
tained in the past, but also obtain the new lowering and raising
multiple operators in the state space as φ I

n1
⊗ φ I

n2
⊗ · · · ⊗ φ I

np
,

φ
J †

m1 ⊗φ
J †

m2 ⊗· · ·⊗φ
J †

mp , and then we give a series of the new funda-
mental multiple commutative relations of the lowering and raising
multiple operators in the state space, which cannot be obtained
before. To investigate the spectra of the p-brane, we naturally and
consistently relate the commutative relationships between the dif-
ferent normal modes to the commutative relationships between
the different multiple raising and lowering operators, and define
the vacuum states which must be annihilated by the lowering op-
erators. And the basis for the Fock space states can be taken of
the form with the raising operators acting on the vacuum state.
Benefit from the work of Ref. [7], we can choose the vanishing of
the Hamiltonian. On the construction of the spectrum, we have re-
moved the infinite contribution of the background.

In the fourth section, we have discussed the spectrum of the
open 3-brane explicitly. At the first three levels, there are three
classes of tachyon states appearing as scalar states, vector states
and 2-rank states, respectively, which are different from the string
theory and 2-brane model. In string theory, a tachyon state has
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the mass-square −1/α′ and it represents an excitation of the D-
brane with open strings attached, which can lower the energy of
the D-brane. So the existence of the tachyon is telling us that the
D-brane is unstable and will decay. In 3-brane model, we find from
Eqs. (46) and (62) that there are two kinds of scalar tachyon states,
one of which has lower mass-square than that of string case and
that of 2-brane case [23]. The tachyon state as vectors and 2-rank
tensors will also contribute to the lowering of the energy of the
D-brane with open 3-branes attached. As a result, all the contri-
butions of the three types of tachyon states must be incorporated
into the tachyon potential, then the tachyon potential will depend
on all the three types of field configurations which make the D-
brane more unstable and decay more easily.

More interestingly, some massless states, such as the graviton
states, Kalb–Ramond fields, dilaton states and photon states are all
produced at the same level in the open 3-brane model. Besides,
3-rank tensor states also appear at the same level. From the an-
gle of differential geometry, this 3-rank tensor can always be used
to construct totally symmetric and totally antisymmetric forms.
In string theory, however, graviton fields, Kalb–Ramond fields and
dilaton field only appear in closed bosonic string theory and pho-
ton states only appear in the open string theory. Whereafter, we
also give two massive levels.

This procedure to achieve the spectrum of open 3-brane can
be generalized directly to higher-dimensional objects, i.e., p-brane.
Due to more and more spacial directions considered, the commuta-
tive relations or the constructions of raising and lowering operators
will be more and more complicated. The direct result is that all
the energy levels will be suppressed greatly, and higher rank ten-
sor states will be produced at lower levels. What attract us is still
the tachyon states which will contribute to the instability of the D-
brane with p-brane attached. While the appearance of higher rank
tachyon states will make the tachyon potential more and more
complicated.

The motivation to study the spectra of the p-brane is that the
p-brane is the natural generalization of the string as the strings
had done to the particles. In Ref. [23], we had investigated the
quantization and the spectra of open 2-brane and found some
particle states which are not found in string theory, such as vec-
tor tachyon states. That is to say, the increase of dimensions will
increase the types of the particle states. A technical difference
between the p-brane and string theory is that the creating and
annihilating operators are difficult to be defined because of the in-
creasing numbers and types of the oscillating modes. In this Letter,
we have defined the operators and states by introducing the ten-
sor product forms of single-operator and single-states, respectively.
The novel feature in our treatment is that we have defined the
creating and annihilating operators and the corresponding states,
which possess multidimensional oscillating modes, and we found
very fruitful types and numbers of particle states as predicted.
Therefore, a general useful theory of the first and second quan-
tizations and spectra of the open p-brane are given in this Letter.
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Appendix A

Now we give the generalized expressions of Eq. (29) for the p-
brane.

Substituting the second expression of Eq. (18) into Eq. (21), we
have[

X I
n1n2n3···np−1np

,
(

X J
m1m2m3···mp−1mp

)†]
= − 2p−1

π p−1
η I J δn1m1δn2m2δn3m3 · · · δnp−1mp−1δnpmp . (84)

Using Eq. (84) and the first multiple commutative relation of
Eq. (26), we obtain⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X I
n1n2n3···np

=
√

2p−1

π p−1
φ

I†
n1 ⊗ φ

I†
n2 ⊗ · · · ⊗ φ

I†
np ,

(
X J

m1m2m3···mp

)† =
√

2p−1

π p−1
φ

J
m1 ⊗ φ

J
m2 ⊗ · · ·φ J

mp .

(85)

The other discussions are similar, we don’t repeat again.
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