Suppression of the CMB quadrupole mode due to the primordial black hole remnants

Yu-Hsiang Lin

Advisor: Pisin Chen

National Taiwan University LeCosPA May 10, 2012

First LeCosPA Symposium

Cover Story

Bravos to the First LeCosPA Symposium

LeCosPA2012

LeCosPA

About
 Logo

- People
- Working Groups
- Experimental Projects
- Publications
 Contact

Visiting LeCosPA

- Maps & Directions
- Travel Information
- Visitors Program
- Sister Institutions
- NCTS FG-CPA

Links

The First LeCosPA Symposium: "Towards Ultimate Understanding of the Universe", finally came on stage and was unveiled on February 6, 2012. In conjunction to the symposium, an Opening Ceremony was held to celebrate the 4th anniversary of the NTU Leung Center for Cosmology and Particle Astrophysics (LeCosPA), which was founded on

	Times
F究計劃 會 2011	Working Groups
	Experi
<u>irst</u> osium	imental jects
ent Won	
cience	
ition	
桂冠獎	
• More	

home

fea

Events

(120215)

<u>Tea Times</u>
 Working Groups

極極頂科學

December 12

Bravos to the F

LeCosPA Symp

LeCosPA Stude

2011 Popular S

Writing Compet

第五屆科普寫作

12

News

(120303)

- Conferences
- Mini-Workshops
- Summer School
- Social Events

For Memebers

Meeting Materials

http://lecospa.ntu.edu.tw/

pn=gn" Pr Pr Pr $\Box \phi - M^{*} \phi = 0$ - 30 VADA = 1 2 2 2 4 Pro PA P. P. = - - 3. 3. J. F. + ·• g• Page 7 1 2 3

Outline

Our understanding to the history of the universe

- The primordial black hole remnants and the pre-inflation matter era
- Issues of the present treatment and the *ab initio* treatment proposed
- Quantization of the scalar field in the pre-inflation era
- The resulting mode evolution and primordial spectrum

The Evolution of the Universe

NASA/WMAP Science Team

WMAP 7-Year Temperature Power Spectrum

E. Komatsu et al., Astrophys. J. Suppl. Ser. 192 18 (2011).

3

Mode Evolution

2

3

Page 12

Various Scenarios

Initially kinetic energy dominated

- C. R. Contaldi, M. Peloso, L. Kofman, and A. Linde, J. Cosmol. Astropart. Phys. 07, 002 (2003).
- J. F. Donoghue, K. Dutta, and A. Ross, *Phys. Rev. D* 80, 023526 (2009).
- Pre-inflation radiation-dominated era
 - B. A. Powell and W. H. Kinney, *Phys. Rev. D* 76, 063512 (2007).
 - I-C. Wang and K.-W. Ng, *Phys. Rev. D* 77, 083501 (2008).
- Pre-Inflation matter-dominated era
 - F. Scardigli, C. Gruber, and P. Chen, *Phys. Rev. D* 83, 063507 (2011).
 - C. Gruber, Cosmic Microwave Background Anomaly and Its Indication of a Pre-Inflation Black Hole Universe (Master Thesis, Johannes Kepler Universität, Linz, Austria, 2010).
 - Y.-H. Lin, Ab initio Investigation on the infrared cutoff of the primordial power spectrum (Master Thesis, National Taiwan University, Taipei, Taiwan, 2011)

Various Scenarios

General forms of initial conditions

- L. Sriramkumar and T. Padmanabhan, Phys. Rev. D 71, 103512 (2005).
- D. Boyanovsky, H. J. de Vega, and N. G. Sanchez, *Phys. Rev. D* 74, 123006 (2006).

Double inflation

- B. Feng and X. Zhang, *Phys. Lett. B* **570**, 145 (2003).

Punctuated inflation

- R. K. Jain, P. Chingangbam, L. Sriramkumar, and T. Souradeep, *Phys. Rev. D* 82, 023509 (2010).
- Model-independent reconstruction
 - P. Mukherjee and Y. Wang, Astrophys. J. 599, 1 (2003).

Pre-Inflation Matter Era: The Black Hole Remnants

Black hole remnants in the early universe
F. Scardigli, C. Gruber, and P. Chen, *Phys. Rev. D* 83, 063507 (2011)

Primordial micro black holes

 Produced as the spontaneous formation of black holes out of the gravitational instabilities of space-time
 D. J. Gross, M. J. Perry, and L. G. Yaffe, *Phys. Rev. D* 25, 330 (1982)

Pre-Inflation Matter Era: The Black Hole Remnants

- Evaporate after created
- Left as remnants with minimum mass restricted by the general uncertainty principle
 - R. J. Adler, P. Chen, and D. I. Santiago, Gen. Relativ. Gravit. 33, 2101 (2001)
- Total amount of the black hole remnants are then limited by the holographic principle
 - G. 't Hooft, arXiv:gr-qc/9310026
 - L. Susskind, J. Math. Phys. (N.Y.) 36, 6377 (1995)
 - R. Bousso, Rev. Mod. Phys. 74, 825 (2002)

Evolution of the Energy Density in the Pre-inflation Matter Era

In (pre-inflation) matter dominated era, Friedmann equation reads

$$H^{2} = \frac{8\pi}{3} \frac{\rho_{i} a_{i}^{3}}{a^{3}}$$

• where we set the initial condition at $t_{i} = 10^{3} t_{p}, \eta_{i} = 0, a_{i} = 1$
• and $\rho_{i} = 10^{-5} \rho_{p} (\rho_{p} = \frac{m_{p}}{l_{p}^{3}})$
• while $\overline{\rho_{s}} = 2.38 \times 10^{-11} \rho_{p}$

 P_s

The time is chosen to be that when the production of black holes is cut off due to the holographic principle

217

Evolution of the Energy Density in the Pre-inflation Matter Era

- Energy density against time (log-log)
- Solid: scalar field; Dashed: pre-inflation matter density

Issues about the treatment

Black hole remnants in the early universe
F. Scardigli, C. Gruber, and P. Chen, *Phys. Rev. D* 83, 063507 (2011)
Disturbed higher moments

Improper estimation of the evolution of modes

Issues about the treatment

 Massless scalar field can not provide the exponential expansion

- Metric perturbations are not taken into account
- The conservative curvature perturbation is not considered
- Boundary conditions are obtained by the matching to the CMB data

The Conservative Quantity: The Adiabatic Modes

On the super-horizon scales, the following quantity is conserved (S. Weinberg, *Phys. Rev. D* 67, 123504 (2003); *ibid* 69, 023503 (2004).)

$$R = -\Psi - \frac{H}{\dot{\phi}_0} \,\delta\phi$$

 Serves as the bridge connecting the inflation and the radiation eras

Ab initio treatment proposed

- Y.-H. Lin, Ab initio Investigation on the infrared cutoff of the primordial power spectrum (Master Thesis, National Taiwan University, Taipei, Taiwan, 2011)
- Adopt a massive scalar field responsible for the inflation
- Perturbations to the scalar field and the metric are both included
- Using the conservative variable for the primordial power spectrum
- Obtain the initial conditions to the differential equations by quantizing the scalar field

Inflation Model

$$L = -\frac{1}{2}\partial_{\alpha}\phi\partial^{\alpha}\phi - V(\phi)$$

$$V(\phi) = \frac{1}{2}m^2\phi^2$$

 See, for example, V. Mukhanov, *Physical Foundations of Cosmology* (Cambridge University Press, Cambridge, 2005)

Page 23

Inflation Model

$$\phi(\bar{x},t) = \phi_0(t) + \delta\phi(\bar{x},t)$$

$$g_{\mu\nu} = \begin{pmatrix} -1 - 2\Psi & 0 & 0 & 0 \\ 0 & a^2(1 + 2\Phi) & 0 & 0 \\ 0 & 0 & a^2(1 + 2\Phi) & 0 \\ 0 & 0 & 0 & a^2(1 + 2\Phi) \end{pmatrix}$$

2

3

Change the form of the equation

- The original form of the perturbed part of the Einstein equation
 - Newtonian gauge
 - Scalar field

$$\nabla^{2}\Phi - 3Ha^{2}(\dot{\Phi} - H\Psi) = 4\pi a^{2}(\bar{\rho}_{s} + \bar{P}_{s}) \left\{ \frac{1}{c_{s}^{2}} \left[\Psi - \frac{\partial}{\partial t} \left(\frac{\delta\varphi}{\bar{\varphi}} \right) \right] + 3H \frac{\delta\varphi}{\bar{\varphi}} \right\}$$

$$c_{s} = -\frac{\sqrt{\overline{\rho}_{s} + \overline{P}_{s}}}{\frac{1}{\overline{\varphi}}\sqrt{\left(\frac{\partial \overline{\rho}_{s}}{\partial \overline{X}}\right)_{\overline{\varphi}}}} = 1$$

$$\dot{\Phi} - H\Psi = -4\pi \left(\overline{\rho}_s + \overline{P}_s\right) \frac{\delta\varphi}{\dot{\overline{\varphi}}}$$

 $X = -\frac{1}{2}\partial_{\alpha}\varphi\partial^{\alpha}\varphi$ $\overline{X} = \frac{1}{2}\dot{\overline{\varphi}}^{2}$

225

Mukhanov, Physical Foundations of Cosmology

Change the form of the equation

By new variables u and v, and new parameters z

$$z = \frac{a\sqrt{\overline{\rho}_s + \overline{P}_s}}{c_s H}$$

$$R = \Phi - H \frac{\delta \varphi}{\dot{\overline{\varphi}}} = \frac{v}{z}$$

$$u = \frac{\Phi}{4\pi\sqrt{\overline{\rho}_s + \overline{P}_s}}$$

226

2

Change the form of the equation

The equation reduces to

(16)

$$\frac{\partial^2 v}{\partial \eta^2} + \left(k^2 - \frac{1}{z}\frac{d^2 z}{d\eta^2}\right)v = 0$$

with

• (15)
$$z = -\frac{a}{H}\dot{\overline{\varphi}}$$

Rearrange the equation of motion (16) in terms of R

(17)
$$\frac{d^2R}{d\eta^2} + 2\frac{1}{z}\frac{dz}{d\eta}\frac{dR}{d\eta} + k^2R = 0$$

This is also known as the "Mukhanov-Sasaki equation"

Quantization of R

The Lagrangian of R is

$$S = \int Ld\,\eta dx dy dz$$

$$L = \frac{1}{2} \left\{ \left[\frac{\partial}{\partial \eta} (Rz) \right]^{2^2} + c_s^2 Rz^2 \nabla^2 R + R^2 z \frac{d^2 z}{d\eta^2} \right\}$$

228

The canonical conjugate of R is

$$\pi = \frac{\partial L}{\partial \frac{\partial R}{\partial \eta}} = \frac{\partial R}{\partial \eta} z^2 + Rz \frac{dz}{d\eta}$$

 To invoke the commutation relation, we need the *analytical* solution of R

$$\left[\hat{R}(\bar{x},\eta),\hat{\pi}(\bar{x}',\eta)\right] = i\delta^{3}(\bar{x}-\bar{x}')$$

Quantization of R

Obtain the normalized solution at the early times

$$\delta\phi_{k} = \frac{3}{8\pi^{\frac{5}{2}}\sqrt{k}\rho_{0}\overline{\eta}^{2}} \left(1 - \frac{i}{k\overline{\eta}}\right)e^{-ik\overline{\eta}}$$

$$\Psi_{k} = \frac{1}{\sqrt{\pi k}} \dot{\phi}_{0} \left(\frac{i}{k} + \frac{3}{k^{2} \overline{\eta}} - \frac{3i}{k^{3} \overline{\eta}^{2}} \right) e^{-ik\overline{\eta}}$$

$$\overline{\eta} = \eta + \sqrt{\frac{3}{2\pi\rho_0}}$$

2

3

Page 29

The Primordial Spectrum – With Pre-inflation Matter Era

3

• Page 30

Mode Evolution – Comparison Between the Pure Inflation Case and Pre-inflation Matter Era Case

3

Page 31

Conclusions

An ab initio and unified way of calculating the primordial spectrum of the curvature perturbation is given

The pre-inflation matter era produces a cutoff at the large scales of the primordial power spectrum, which in turn suppresses the quadrupole mode of CMB spectrum

My "Guess" to the Full-Ranged Initial Spectrum

2

3

Page 34

Modify CMBFAST to Incorporate the Numerical Initial Spectrum

My "Guess" to the Full-Ranged Initial Spectrum

3