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' AdS/CFT Duality

* In 1997 Juan Maldacena first conjectured that typellB string
Q:.;ngg_y on AdS5 XS5 should be somehow dual to the Ay’°=4

U(N) super-Yang-Mills theory in 3+1 dimensions.

D3 branes

S“'AdS 7 CFT/

' / / * Juan Maldacena, arXiv:hep-th/9711200




[he concrete realization of

holographic principle

=) Quantum Gravity !?

* G. t Hooft, arXiv:hep-th/9310026 * L. Susskind, arXiv:hep-th/9409089
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The formu proposed by Witten, Polyakov, etc in 1998:

<€f d4x¢o(éf)0(f)>

CFT — Zstring (D(f, Z)

—

= This relationship is usually taken as the
“"“Ppackbone of the AAS/CFT duality.

Operator in Dynamical field
the dual field - propagating on
theory bulk

AdS/CFT dictionary

* E. Witten, arXiv:hep-th/9802150
* S. S. Gubser, 1. R. Klebanov, A. M. Polyakov, arXiv:hep-th/9802109
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Hol6graphic Renormalization
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ading saddle point approximation:

( Sonshell|P0(2)] = Worr|do(x)] :

IR divergence UV divergence
hﬁ — IR limit

U-V—IR relation

ﬁ-

k UV limit
Radius. r

Introduce covariant counterterms in gravity side

(0), oren

1
V90 (2) 660 (2)

RG transformation can be studied by using bulk diffeomorphisms
that induces a Weyl transformations on the boundary metric.

* S. Susskind, E. Witten, arXiv:hep-th/9805114 * K. Skenderis, arXiv:hep-th/0209067



the duality has been generalized to gravitational theories with
certain other boundary conditions, and to field theories that are
not conformally invariant.

* G. T. Horowitz, J. Polchinsk, arXiv:gr-qc/0602037



Two Complementary Approaches

Bottom to up
¥ Toy models coming from simple gravity theory;
% Basic ingredients: g, 4, V, P ...
% Advantage: simplicity and universality;
¥ Disadvantage: the dual field theory 1s unclear.

Top to down
% Configurations originated from string/M theory;
% Exact solutions of supergravity or Dp/Dq-branes;
¥ Advantage: good understanding on field theory;
% Disadvantage: complexity.




“+Two Main Methods

Retarded Green's function method
¥ General, leading to many transports coefficients;

Y Retarded Green’s function in bulk encodes a retarded
correlator of its dual field operator;
Y Kubo’s formula == transports coefficients .
X D.T.Son, A.O.Starinets, arXiv:0205051

The membrane paradigm
Hydrodynamic behavior of boundary field theory

VS those at stretched horizon of the black hole;
Transport coefficients VS quantities at stretched horizon ;
Elegantly explains universalities of Transport coefficients

X N. Igbal and Hong Liu, arXiv:0809.3808



AOS/CFT and Condensed Matter

The holographic duality is a powerful theoretical method to investigate
strongly.eoupled field theories. In condensed matter physics, there are
many strongly interacting systems that can be engineered and studied in
detail in laboratories:

r e
- I quantum phase transition e rj:
* superfluidity and superconductivity M
* cold atoms \ \: || o
* fermi liquid and non-fermi liquid A
! J )

This holographic methods may be able to offer insight into some of
these nonconventional materials, thus in turn leading to experimental
AdS/CFT.

* C. P. Herzog, arXiv:hep-th/0904.1975 * S. A. Hartnoll, arXiv:hep-th/0903.3246



’CQMO real experimental data in graphene
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ure: Left: Plots of the real part of the electrical conductivity vs. frequency via AdS/CFT.
Right: Plots of the imaginary part of the electrical conductivity vs. frequency.
Different curves dual to different values of the chemical potential at fixed temperature.
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Fi gure: Experimental plots of the real (Left) and imaginary (Right) part of the electrical conductivity
in graphene as a function of frequency.
Different curves correspond to different values of the gate voltage at fixed temperature.

* Z.Q. L1, E. A. Henriksen, etc, Nature Physics 4, 532 - 535 (2008)



Holographic Superconductivity
Einsfgj%eﬂ;gharged scalar theory with a negative cosmological constant:

1

2K2

dld—1) 1

S 5 = 1 Ew P = Vi — ig Al — m )

(8

/ d™ e/ —g(R +

Mes as an order parameter . The normal phase corresponds to RN-AdS
black hole background with vanishing scalar field.

When the temperature of the black hole is below a critical temperature,

there are at least two distinct mechanisms leading to the black hole solution
unstable to develop a scalar hair which behaves near the boundary as

SACORAC)
'I'ﬁ_ +
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This results in a superconductor (superfluid) phase transition.

* S. A. Hartnoll, C. P. Herzog, G. T. Horowitz, arXiv:0810.1563



"“A Physical Picture
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Figure: A superconducting condensate floats above a black hole horizon because of a

balance of gravitational and electrostatic forces.

* Steven S. Gubser, Silviu S. Pufu, arXiv:0805.2960



The Superconducting Phase Transition

Givenid = 3, m” = —2 (above the BF bound), we can choose a scalar in the
field theory with scaling dimension one or two.
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Figure: Plots of temperature vs. condensate for operators with dimension one and two.

For T < T,
(0) ~(Te = T)Y2.,

the standard Landau-Ginzburg mean field result.



Conductivity
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Figure: Plots of the real part ot the conductivity vs. frequency at low temperature tor dimension
one case (left) and dimension two case (right). The dotted red curve is the imaginary of the
conductivity.

Re[o(w)] contains a delta function mnsd(w) which leads to
superconductivity where ns is the superfluid density.

Evidence for strong binding: (O1) and \/(O>) can be reinterpreted

as twice the superconducting gap A.

Recall that: For BCS at T =0, 2A =3.547T..



dr?
r?B(r)

+ 12 (=eCdE? + da? + dy? + A7) B(r)dy?)

— Ay =o(r), & =u(r

-4 (). &=

IHere we have set L = 1 without lose of generality. We require that B(r) vanishes at the
tip of the soliton. And in order to obtain a smooth geometry at the tip ry, v should be

made with an 1dentification

Amre—A(ro) /2 x~x+T
rsB'(ro)

The matter fields near the boundary r — < behave as

) @ . p

A V& 1 o

p=—0—+—=—+..., PTHTFT.-
.r —_

i

To recover the pure AdS boundary, we also need

A(oo) = 0 and C({o0) = 0.

r =Ty T

* T. Nishioka, S. Ryu, T. Takayanag, arXiv:0911.0962 * R.G. Cai, S. He, L. Li, Y.L. Zhang, arXiv:1203.6620
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*’Entan gl ement EntI‘OPy

&
.

Wide quantur n Chai tum Field Th
0d1V1d}quantUm system Spin Chain Quantum Field Theory

mnto two parts A and B A~~~

me-trage over the degrees A l. B
N 4 y

of freedom in region B ===

o remaining degrees of freedom are described by a density matrix PA

=l calculate von Neumann entropy:

Spr = =T |pa log pa]
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" Area Law

EE |?1 QFTS includes UV divergences.
Area Law

|Ina(d+1)dim. QFT with a UV fixed point, the leading term of EE

is proportional to the area of the (d-1) dim. boundary OA :
Area(0A)

S, ~ —— +(subleading terms)

d

where (7 is a UV cutoff (i.e. lattice spacing).

ALFRED T. KAMAJIAN

Intuitively, this property is understood like:

Most strongly entangled —— ‘




E} - Minimal Surface

d+1
|

R/
|

7, i1s the minimal area surface
(codim.=2) such that |

| =
@4—5714 and A"‘"?/A : z>a (UV cut off)

AdS,,,

Z

* S. Ryu, T. Takayanagi, arXiv:hep-th/0603001



8 Qrd/2 Rd 1 (1 _ yﬂ)(d—ﬂjjﬂ
4G (d/2) / ye
= pi(l/a)"™ +pa(l/a) +

L) Pt (l/a) +pa + Ola/l), d: even,
pa_s (1/a)® + qlog (I/a) + O(1), d: odd,

where the coefficients are defined by

pi/C = (d—1)"" p3/C=—(d—2)/[2(d - 3)],
pa/C = (2ym)7'T(d/2T ((1 —d)/2) (if d=even),

2 2 d
g/C = (=) 2@ -2)/(d -1 (if d=odd), ds” = It
”.-’I'd*de

2G5 (d/2)

where C =

* Shinsei Ryu, Tadashi Takayanagi, arXiv:hep-th/0605073
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*E_vaeometry in Our Holographic Model

For smooth case, we need to minimize the following functional

RI'
2Gy

o 5.le] — f re*F /5 P B () (de /drdr

we obtain the entanglement entropy as

-
Es _RT /l ri/B(r)el) RT
AT 2Gn \/T‘GB Jedlr) — r6 B(r, )edlr) 4Gy "€

The belt width is given by

1

_/ —dr—/ réB(r)ed(r)
T \/B{P { — 'J"_;It

CBir. }t’q":"" - 1)

there is also a disconnected solution described as two

RF
4G N

1
€2

Sdas _

separated surfaces
1
[
./m

4Gw( + s)

M

* Rong-Gen Cai, Song He, Li Li, Yun-Long Zhang, arXiv:1203.6620
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¢on fing@ent/deconfinement” phase transition
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Figure: The dashed green and solid red curves come from the connected solutions, while the
solid blue one comes from the disconnected one. The lowest curve is physically favored
compared with others because it has minimal entropy.
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With a fixed €, the entanglement
entropy decreases as 1 becomes
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* T. Nishioka and T. Takayanagi, hep-th/0611035




HEE in half 5ﬁ%dding case:
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Figure: The solid red curve denotes the entropy in the superconductor phase, while the dashed blue line
is for the pure AdS soliton solution. The entropy rises as the chemical potential 1 is increased after the
phase transition, arrives at its maximum at a certain U1 , and then decreases monotonously.

The belt width € does not play the essential role for the non-monotonic
behavior of the entanglement entropy !



) _\_= A clearly physical interpretation is called for.
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Figure: The phase diagram of entanglement entropy with the belt embedding in the holographic
insulator/superconductor model for. The phase boundary between the confining phase and
deconfining phase is denoted by the dotted blue line and solid red curve, while the insulator
phase and superconductor phase are separated by the vertical dashed line.



' P-wave-Superconductor Phase Transition

Einstein-Yang-Mills theory in five-dimensional asymptotically AdS spacetime.

5 ]- ]-2 ]- a L a A H A abe Ab qe
- /d V=il55 R+ 55) = g B ™) where Fu = Op Ay — O, AL + e AA

Ansatz for the metric and Yang-Mills field are chosen by

- ds® = —N(r)o(r)?dt* + ——dr® + P’ f(r)"dz® + r* f(r)?(dy® + d=7),

M N (?)

A = ¢(r)r3dt + w(r)ride.
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* M. Ammon, J. Erdmenger, V. Grass, P. Kerner , A. O’'Bannon, arXiv:0912.3515
* Rong-Gen Cai, Song He, Li Li, Yun-Long Zhang, arXiv:1204.5962



Entar@@ment Entropy and Thermal Entropy
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7 o 1ngs rongly interacting field

Relativistic CFT LEHIEE And-ars-c:ln Cuprate
with gravity (AdS) dual

theories:
= equations of state,
— correlation functions,

" _transport properties......
The hope is that this holographic method may be relevant
for understanding real world strong coupled condensed
matter systems.

e The entanglement entropy (EE) is a useful bridge between gravity (string theory)
and condensed matter physics.

Gravity “ Entanglement ﬁ Cond-mat.
8 SA ~ Area systems ‘lP>
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Conformal fields
ALFRED T. KAMAJIAN

Hot radiation

Tuning parameter
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matter

-
555

Heavy fermion metal

P -
by -
W%*"@ N

Just as Horowitz and Polchinski wrote: We find 1t difficult to
believe that nature does not make use of it, but the precise way in

which 1t does so remains to be discovered.
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