Split Supersymmetry from Gauged R-Symmetry

Fei Wang
ZhengZhou University
Mini-workshop on SUSY, KITPC

Apr 2, 2014

内容提要

（1）Split SUSY From GUT and Dark Matter Constraints
（1）Split SUSY From GUT and Dark Matter Constraints
（2）Split SUSY From Gauged R－Symmetry
（1）Split SUSY From GUT and Dark Matter Constraints
（2）Split SUSY From Gauged R－Symmetry
（3）Split SUSY From Orbifold GUT Model with Gauged R－symmetry

Why New Physics Is Needed

- Standard model is very successful in describing physics up to the electroweak scale. Standard Model is the correct low energy effective theory.
- Many free parameters are put in by hand. Origin of flavor structure, three generations, the introduction of yukawa coupling...
- Neutrino mass- trivially accommodated with right handed neutrino and possible large Majorana mass terms.
- Triviality bounds and vacuum stability bounds. Triviality bounds needs light higgs. Triviality bounds

$$
\Lambda_{\infty} \simeq v \times\left(5 \times 10^{5}\right)^{\frac{246^{2}}{m_{h}^{2}}}
$$

Vacuum stability bounds

$$
m_{[H]} \geq 129.5+1.4 \frac{m_{t}(\mathrm{GeV})-173.1}{0.7}-0.5 \frac{\alpha_{s}\left(M_{z}\right)-0.1184}{0.0007}
$$

Why SUSY Is Needed

- The predicted 126 GeV Higgs is relatively light(within the narrow window predicted by weak scale SUSY: $\left.m_{h} \sim 115-135 \mathrm{GeV}\right)$.
- Fine tuning problem needs an explanation-naturally solved by weak scale SUSY.
- Dark Matter candidates can naturally be provided by SUSY(with R-parity).
- To understand the origin of the three gauge coupling and matter contents, the Grand Unified Theory(GUT) is proposed. The unification of gauge coupling may indicate the existence of low energy SUSY.
- Radiative electroweak symmetry breaking...

Split SUSY

- Motivation
- Abandon the naturalness consideration-after all, CC need even worse fine-tuning.
- Keep the most appealing feature of SUSY: Gauge coupling unification, viable dark matter.
- Setting
- The scalar superpartner (squarks and sleptons) and $B \mu$ very heavy.
- Gaugino and higgsino are kept to be light by approximate R-symmetry.
- Fine tuning a light higgs.
- Advantage
- Consistent with null search on LHC.
- Evade the notorious SUSY flavor and CP problems.
- Relax the Dim-5 operator induced fast proton decay.

Split SUSY

$$
\begin{aligned}
& \begin{array}{l}
\Delta L=M_{3} \tilde{g} \tilde{g}+M_{2} \tilde{w} \tilde{w}+M_{1} \tilde{b} \tilde{b}+\mu \psi_{u} \psi_{d} \\
\quad+\sqrt{2} \kappa_{u} h^{\dagger} \tilde{w} \psi_{u}+\sqrt{2} \kappa_{d} h \tilde{w} \psi_{d}+\sqrt{2} \frac{1}{2} \kappa_{u}^{\prime} h^{\dagger} \tilde{b} \psi_{u}-\sqrt{2} \frac{1}{2} \kappa_{d}^{\prime} h \tilde{b} \psi_{d} \\
\quad-m^{2} h^{\dagger} h-\frac{\lambda}{2}\left(h^{\dagger} h\right)^{2}
\end{array} \\
& \kappa_{u}\left(m_{S}\right)=g_{2}\left(m_{S}\right) \sin \beta, \kappa_{d}\left(m_{S}\right)=g_{2}\left(m_{S}\right) \cos \beta \\
& \kappa_{u}^{\prime}\left(m_{S}\right)=\sqrt{\frac{3}{5}} g_{1}\left(m_{S}\right) \sin \beta, \kappa_{d}^{\prime}\left(m_{S}\right)=\sqrt{\frac{3}{5}} g_{1}\left(m_{S}\right) \cos \beta \\
& \lambda\left(m_{S}\right)=\frac{\frac{3}{5} g_{1}^{2}\left(m_{S}\right)+g_{2}^{2}\left(m_{S}\right)}{4} \cos ^{2} 2 \beta
\end{aligned}
$$

Split SUSY From GUT Constraints [Fei, Jin Min,Wenyu]

- One-loop RGE disfavor large M_{S} and will predict small $\alpha_{s}\left(M_{Z}\right)$ below observed value.
- Two-loop RGE are necessary to push upward the value of $\alpha_{s}\left(M_{Z}\right)$ by $\mathrm{O}(0.1)$.
- So it is necessary to take into account two loop gauge coupling RGE and one loop for yukawa.

$$
\begin{aligned}
& \frac{d}{d \ln E} g_{i}=\frac{g_{i}^{3}}{(4 \pi)^{4}}\left[\sum_{j} \Delta B_{i j} g_{j}^{2}-\sum_{a=u, d, e} d_{i}^{a} \operatorname{Tr}\left(h^{a \dagger} h^{a}\right)\right. \\
& \left.-d_{W}\left(\tilde{g}_{u}^{2}+\tilde{g}_{d}^{2}\right)-d_{B}\left(\tilde{g}_{u}^{\prime 2}+\tilde{g}_{d}^{\prime 2}\right)\right]+\frac{b_{i}}{(4 \pi)^{2}} g_{i}^{3}
\end{aligned}
$$

with the $U(1)_{Y}$ normalization $g_{1}^{2}=\frac{5}{3}\left(g_{Y}\right)^{2}$

- Two loop RGE with threshold corrections are important.
- Neglect possible GUT scale threshold corrections and higher-dimensional operators.

Scenario IV for Two Loop RGE

Split SUSY From GUT Constraints

The ratios of gaugino masses and gauge couplings are RGE-invariant (up to one-loop level)

$$
\begin{equation*}
\frac{d}{d \ln \mu}\left(\frac{M_{i}}{g_{i}^{2}}\right)=0 \tag{1.1}
\end{equation*}
$$

This leads to a mass relation given by

$$
\begin{equation*}
\frac{M_{1}}{g_{1}^{2}}=\frac{M_{2}}{g_{2}^{2}}=\frac{M_{3}}{g_{3}^{2}}=\frac{M_{U}}{g_{U}^{2}} \tag{1.2}
\end{equation*}
$$

with universal gaugino mass at the GUT scale.
Gaugino mass unification naturally appear in the ordinary
SUSY-SU(5) GUT models (it can be spoiled by the introduction of certain higher dimensional representation Higgs fields, e.g., the 75, 200 dimensional Higgs fields [Tianjun Li, Fei et al]).

Figure: The RGE running of the three gauge couplings (we only show the region of $E>10^{14} \mathrm{GeV}$). The dashed lines (green) denote the one-loop results while the solid lines (red) denote the two-loop results.

Figure: The scatter plots of the parameter space with the gauge coupling unification requirement.

Fei Wang
Split Supersymmetry from Gauged R-Symmetry

Split SUSY From Combined GUT and DM Constraints

We scan the parameter space of split-SUSY in the ranges:

$$
\begin{equation*}
1<\tan \beta<50,0<\left(M_{2}, \mu\right)<M_{S} . \tag{1.3}
\end{equation*}
$$

(1) We use the lightest neutralino $\tilde{\chi}_{1}^{0}$ to account for the Planck measured dark matter relic density $\Omega_{D M}=0.1199 \pm 0.0027$ (in combination with the WMAP data);
(2) The LEP lower bounds on neutralino and charginos, including the invisible decay of Z-boson;
(3) The precision electroweak measurements;
(4) The combined mass range for the Higgs boson: $123 \mathrm{GeV}<M_{h}<127 \mathrm{GeV}$ from ATLAS and CMS collaborations of LHC.
(5) Spin-independent cross section is calculated.

Fei Wang
Split Supersymmetry from Gauged R-Symmetry

Split SUSY From Combined GUT and DM Constraints

(1) Upper bound for M_{S} and possible lower bound for M_{2}.
(2) DM below 1 Tev will be fully covered by LHC.
(3) Mixed higgsino dark matter survives.

Why Use R-symmetry

- Least assumption in supersymmetry-intrinsic in SUSY.
- What is R-symmetry: a symmetry distinguish between different spin components within a multiplet.
For vector supermultiplet $V\left(A_{\mu}, \lambda, \bar{\lambda}, D\right)$ and chiral supermultiplet $S(z, \psi, F)$

$$
\begin{align*}
& V(x, \theta, \bar{\theta}) \rightarrow V\left(x, e^{-i \alpha} \theta, e^{i \alpha} \theta\right) \\
& S(x, \theta, \bar{\theta}) \rightarrow e^{-i n \alpha} S\left(x, e^{-i \alpha} \theta, e^{i \alpha} \theta\right) . \tag{2.1}
\end{align*}
$$

Grassman coordinates transform non-trivially under R-symmetry.
$\theta \rightarrow e^{-i \alpha} \theta, \bar{\theta} \rightarrow e^{i \alpha} \bar{\theta}, \int d \theta \rightarrow e^{i \alpha} \int d \theta, \int d \bar{\theta} \rightarrow e^{-i \alpha} \int d \theta$.

Transformation under R-symmetry

- The transformation on component fields for vector supermultiplet and chiral supermultiplet

$$
\begin{array}{ll}
A_{\mu} \rightarrow A_{\mu}, & z \rightarrow e^{i n \alpha} z \\
\lambda \rightarrow e^{-i \alpha} \lambda_{L}, & \psi \rightarrow e^{i(n-1) \alpha} \psi \\
\bar{\lambda} \rightarrow e^{i \alpha} \bar{\lambda}, & F \rightarrow e^{i(n-2) \alpha} F \\
D \rightarrow D \tag{2.2}
\end{array}
$$

- Transformation for Kahler potentia and superpotential

$$
\begin{array}{r}
K\left(\phi^{\dagger}, \phi\right) \rightarrow K\left(\phi^{\dagger}, \phi\right), \\
W(\phi) \rightarrow e^{-2 i \alpha} W(\phi), \\
W_{\alpha} \rightarrow e^{-i \alpha} W_{\alpha}, \quad \bar{W}_{\dot{\alpha}} \rightarrow e^{-i \alpha} W_{\dot{\alpha}}, \tag{2.3}
\end{array}
$$

R-symmetry in SUSY

- Widely used with its discrete version-R parity, which is an additional input for SSM. Prohibit dimension four baryon and lepton number violation interactions that lead to fast proton decay.
- Very useful in obtaining some non-perturbation results:
- non-renormalization theorem in SUSY.
- Anomaly matching in Seiberg duality.
- AdS/CFT: $S U(4)_{R} \sim S O(6)$.
- SUSY broken criteria:

Generically, spontaneously F-term SUSY broken has a unbroken R-symmetry.
Metastable SUSY broken has an approximate R-symmetry.

- Anomaly free non-R symmetries(or discrete version) can not forbid the μ-term in MSSM. [by Mu chun Chen]

Gauged R-symmetry

- Global R-symmetry prohibit tree-level gaugino masses which always given too light gaugino.
- Spontaneously broken R-symmetry will lead to light Goldstone boson-R-axion and light gluino.
- Based on quantum gravitational effects, any apparent global symmetries in an effective Lagrangian are accidental consequences of gauge symmetries and are only approximate.
- Gauged R-symmetry is a special case of local superspace transform.
- R-gaugino need the coupling $g_{R} \bar{\lambda} \gamma^{\mu} \gamma^{5} \lambda V_{\mu}^{R}$ which cannot be given in global SUSY. [by Freedman]
- $\left[Q_{\alpha}, R\right]=i\left(\gamma^{5}\right)_{\alpha}^{\beta} Q_{\beta}$ with local R holds only for local SUSY. [by Dreiner]
- Gauged R-symmetry necessarily involve local SUSY. In global SUSY, only global R-symmetry can be constructed.

Gauged R-symmetry and Gravitino

- Graviton multiplet transformation

$$
\begin{equation*}
e_{\mu}^{m} \rightarrow e_{\mu}^{m}, \psi_{\mu} \rightarrow e^{-i \alpha \gamma^{5}} \psi_{\mu} \tag{2.4}
\end{equation*}
$$

- Transformation invlove gravitino with gauged R-symmetry can lead to transformation into the term $g_{R} \bar{\lambda} \gamma^{\mu} \gamma^{5} \lambda V_{\mu}^{R}$.
- R-gaugino also transform non-trivially.
- A non-vanishing Fayet-IIliopoulos term is necessarily present in the D-term of the scalar potential.
- Consistency of gauged $U(1)_{R}$ needs anomaly cancelation.

No-Go Theorem for GUT Model with Gauged R-symmetry

- Impossible to construct a GUT model in four dimensions that leads to the exact MSSM and possesses an unbroken R symmetry.[Maximilian Fallbacher et al,1109.4797]
- Does not apply to GUT models with extra dimensions.
- Orbifold GUT is thus advantageous in getting a GUT model with gauged R -symmetry.
- Automatically realize D-T splitting which is problematic if use various mechanism in 4D.
- Preserving the attractive feature of GUT and R-symmetry.

SU(5) Orbifold GUT Model with Gauged R-symmetry

Consider 5D orbifold $\mathcal{M}_{4} \times S^{1} /\left(Z_{2} \times Z_{2}\right)$ with projection

$$
\begin{equation*}
P: y \rightarrow-y, \quad P^{\prime}: y^{\prime} \rightarrow-y^{\prime} \tag{3.1}
\end{equation*}
$$

Here $y^{\prime} \equiv y+\frac{\pi R}{2}$. We introduce the following orbifold projection choice

$$
\begin{equation*}
P=(+,+,+,+,+), \quad P^{\prime}=(+,+,+,-,-) . \tag{3.2}
\end{equation*}
$$

We chose the boundary conditions so that the GUT gauge group is broken to $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$ by boundary conditions in the $y=\frac{\pi R}{2}$ brane and preserved in the bulk as well as in the $y=0$ brane. The superpotential takes the form with ' i, j ' indicate the family index.

$$
\begin{align*}
W & \supseteq \sum_{i, j}\left[y_{i j}^{a} \mathbf{1 0}_{i}^{A} \mathbf{1} \mathbf{0}_{j}^{B} \mathbf{5}_{H}+y_{i j}^{b} \mathbf{1 0} \mathbf{0}_{i}^{A} \overline{\mathbf{5}}_{j}^{A} \overline{\mathbf{5}}_{H}+y_{i j}^{c} \mathbf{1} \mathbf{0}_{i}^{C} \overline{\mathbf{5}}_{j}^{B} \overline{\mathbf{5}}_{H}\right. \\
& \left.+y_{i j}^{d} \overline{\mathbf{5}}_{\mathbf{i}}^{\mathbf{B}} \mathbf{5}_{H} \mathbf{N}+\lambda \overline{\mathbf{5}}_{H} \mathbf{5}_{H} S .\right] \tag{3.3}
\end{align*}
$$

Orbifold GUT Model with Gauged R-symmetry

The orbifold decomposition can be written as

$$
\begin{aligned}
\mathbf{1 0}^{A} & =(\mathbf{3}, \mathbf{2})_{-\mathbf{1} / \mathbf{6}}^{(+,+)} \oplus(\overline{\mathbf{3}}, \mathbf{1})_{\mathbf{2} \mathbf{3}}^{(+,-)} \oplus(\mathbf{1}, \mathbf{1})_{-\mathbf{1}}^{(+,-)}, \\
\mathbf{1 0}^{B} & =(\mathbf{3}, \mathbf{2})_{-\mathbf{1} / \mathbf{6}}^{(+,)} \oplus(\overline{\mathbf{3}}, \mathbf{1})_{\mathbf{2} / \mathbf{3}}^{(+,+)} \oplus(\mathbf{1}, \mathbf{1})_{-\mathbf{1}}^{(+,-)}, \\
\mathbf{1 0}^{C} & =(\mathbf{3}, \mathbf{2})_{-\mathbf{1} / \mathbf{6}}^{(+,-)} \oplus(\overline{\mathbf{3}}, \mathbf{1})_{\mathbf{2} / \mathbf{3}}^{(+,-)} \oplus(\mathbf{1}, \mathbf{1})_{-\mathbf{1}}^{(+,+)}, \\
\mathbf{2 4} & =(\mathbf{8}, \mathbf{1})_{\mathbf{0}}^{(+,+)} \oplus(\mathbf{3}, \mathbf{1})_{\mathbf{0}}^{(+,-)} \oplus(\mathbf{1}, \mathbf{1})_{\mathbf{0}}^{(+,-)} \oplus(\mathbf{3}, \mathbf{2})_{\mathbf{1} / \mathbf{6}}^{(+,-)} \oplus(\overline{\mathbf{3}}, \mathbf{2})_{-\mathbf{1}}^{(+,} \\
\overline{\mathbf{5}}^{A} & =(\overline{\mathbf{3}}, \mathbf{1})^{(+,+)} \oplus(\mathbf{1}, \mathbf{2})^{(+,-)}, \\
\overline{\mathbf{5}}^{B} & =(\overline{\mathbf{3}}, \mathbf{1})^{(+,-)} \oplus(\mathbf{1}, \mathbf{2})^{(+,+)}, \\
\mathbf{1}_{N} & =(\mathbf{1}, \mathbf{1})_{\mathbf{0}}^{(+,+)},
\end{aligned}
$$

In 10 and 24 , we use the most general boundary conditions so that we can change the Neuman boundary conditions to Dirichlet boundary conditions by adding heavy brane localized mass terms.

Gauged R-symmetry Anomaly Cancelation

- 5D N=1 SUSY corresponds to 4D N=2 SUSY.
- The R-symmetry in this scenario is $S U(2)_{R}$.
- Boundary conditions preserve only $N=1$ gauged R-symmetry.
- We adopt the scenario with family independent $U(1)_{R}$ symmetry.
- There are orbifold correspondence between standard model matter contents and $\mathrm{SU}(5)$ representations.
- For bulk fields we can introduce Chern-Simmons term to cancel the gauge anomaly without gauge group broken.
- We need only worry about the anomaly of the zero modes.

Anomaly Cancelation For The Zero Modes

Correspondence between standard model matter contents and $\mathrm{SU}(5)$ representations (their fermionic charges)

$$
\begin{aligned}
& Q^{R}(q)=Q^{R}\left(\mathbf{1 0}^{A}\right), Q^{R}(d)=Q^{R}\left(\overline{\mathbf{5}}^{A}\right), Q^{R}(u)=Q^{R}\left(\mathbf{1 0}^{B}\right), Q^{R}(l)=Q^{R}\left(\overline{\mathbf{5}}^{B}\right), \\
& Q^{R}(e)=Q^{R}\left(\mathbf{1 0}^{c}\right), Q^{R}(h)=Q^{R}\left(\mathbf{5}_{H}\right), Q^{R}(\bar{h})=Q^{R}\left(\overline{\mathbf{5}}_{H}\right), Q^{R}(N)=Q^{R}(\mathbf{1}) .
\end{aligned}
$$

The lowest component R -charge R_{ϕ} is related to R_{ψ} by the relation

$$
\begin{equation*}
R_{\phi}=R_{\psi}+1 \tag{3.4}
\end{equation*}
$$

The consistent yukawa coupling lead to

$$
\begin{align*}
q+u+h & =-1, \\
q+d+\bar{h} & =-1, \\
l+e+\bar{h} & =-1, \\
l+n+h & =-1, \\
s+h+\bar{h} & =-1, \tag{3.5}
\end{align*}
$$

Anomaly Cancelation For The Zero Modes

Cancelation for $S U(3)_{c}, S U(2)_{L}, U(1)_{Y}$ anomlay

- $S U(3)_{c}-S U(3)_{c}-U(1)_{R}$

$$
3\left[q+\frac{1}{2} u+\frac{1}{2} d\right]+3+3 o_{c}=0
$$

- $S U(2)_{L}-S U(2)_{L}-U(1)_{R}$

$$
3\left[\frac{1}{2} l+\frac{3}{2} q\right]+\frac{1}{2}(h+\bar{h})+2=0
$$

- $U(1)_{Y}-U(1)_{Y}-U(1)_{R}$

$$
3\left[\frac{1}{2} l+e+\frac{1}{6} q+\frac{4}{3} u+\frac{1}{3} d\right]+\frac{1}{2}(h+\bar{h})=0,
$$

- $U(1)_{Y}-U(1)_{R}-U(1)_{R}$

$$
3\left[-l^{2}+e^{2}+q^{2}-2 u^{2}+d^{2}\right]+h^{2}-\bar{h}^{2}=0,
$$

- $U(1)_{R}-U(1)_{R}-U(1)_{R}$

$$
3\left[2 l^{3}+e^{3}+6 q^{3}+3 u^{3}+3 d^{3}\right]+2 h^{3}+2 \bar{h}^{3}+16+n^{3}+s^{3}+\sum_{m} z_{m}^{3}+8 o_{c}^{3}=0
$$

- $U(1)_{R}-g_{\mu \nu}-g_{\mu \nu}$

$$
3[2 l+e+6 q+3 u+3 d]+2(h+\bar{h})-8+n+s+\sum_{m} z_{m}+8 o_{c}=0
$$

Possible Solutions with Anomaly Cancelation in Zero

 Modes- Possible solution for SSM matter contents:

A proper family independent anomaly free choice in our scenario have the following fermionic R-charge

$$
q=-\frac{1}{3}, d=\frac{1}{3}, u=\frac{1}{3}, l=\frac{1}{3}, e=-\frac{1}{3}, n=-\frac{1}{3}, h=-1, \bar{h}=-1
$$

- Three additional singlets:

$$
z_{1}=\frac{20}{3}, z_{2}=-\frac{68}{3}, z_{3}=\frac{103}{3} .
$$

- Four additional singlets:

$$
\begin{aligned}
& \left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(\frac{64}{3},-\frac{2}{3},-\frac{50}{3}, 13\right) . \\
& \left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(\frac{61}{3}, \frac{11}{3}, \frac{16}{3},-11\right) . \\
& \left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(\frac{62}{3}, \frac{4}{\text { Fei Wang }},-\frac{41}{\frac{1}{3}}, 10\right) .
\end{aligned}
$$

SUSY Broken and Mass Spectrum

The real and gauge-invariant Kahler function are given in unit of Planck scale by the Kahler potential $K(z, z *)$ and superpotential $W(z)$

$$
\begin{equation*}
G\left(z, z^{*}\right)=K\left(z, z^{*}\right)+\ln |W(z)|^{2}, \tag{3.6}
\end{equation*}
$$

The scalar potential is given by

$$
\begin{equation*}
V=e^{G}\left[G_{i} G^{j}\left(G^{-1}\right)_{j}^{i}-3\right]+\frac{g_{R}^{2}}{2}\left(G^{i} Q_{i} z_{i}\right)^{2} \tag{3.7}
\end{equation*}
$$

In case of gauged R-symmetry, the R-charge for W is 2 , we arrive at

$$
\begin{equation*}
D=G^{i} Q_{i} z_{i}=Q_{i} K^{i} z_{i}+W_{i} Q_{i} z_{i} / W=Q_{i} K^{i} z_{i}+2 \tag{3.8}
\end{equation*}
$$

The first term can be written as
$e^{G}\left[G_{i} G^{j}\left(G^{-1}\right)_{j}^{i}-3\right]=e^{K}\left[\left(G^{-1}\right)_{j}^{i}\left(D_{i} W\right)\left(D^{j} W^{*}\right)-3|W|^{2}\right]$ with $D_{i} W=W_{i}+K_{i} W$.

SUSY Broken and Mass Spectrum

- SUSY broken with non-zero D-term or F-term.
- The broken of R-symmetry caused by GUT singlet z_{i} (in the hidden sector).
- Almost vanishing Cosmological constant. Cosmological observation requires $\langle V\rangle=0$. We need negative $\langle W\rangle$ to cancel the positive $\langle D\rangle$ contributions. Not intend to solve the CC problem.
- Negative charged singlet (with Planck scale VEVs) is helpful in fine-tuning the value of $<D>$ term

$$
\begin{equation*}
\left(2 M_{P l}^{2}-\left|Q_{R}\right|<z>^{2}\right) \equiv M^{2} \sim\left(10^{10} G e V\right)^{2} . \tag{3.10}
\end{equation*}
$$

- Tune the $\langle D\rangle$ value to vanish cause even severe fine-tuning.
- Hidden sector involving large exponential of z_{i} can lead to exponential suppression relative to Planck scale after the singlets are integrated out. [Dreiner]
- Justify the cancelation of $-3|<W>|^{2}$ with $\left.<D\right\rangle^{2}$ contributions

SUSY Broken and Mass Spectrum

- Gravitino mass:

$$
\begin{equation*}
m_{3 / 2}=\kappa^{2}<e^{\frac{\kappa^{2} K}{2}}|W|>\sim \frac{M^{2}}{M_{P l}} \sim 10^{2} G e V . \tag{3.11}
\end{equation*}
$$

- Very high sparticle masses from positive $U(1)_{R}$ contributions.

$$
\begin{equation*}
\bar{y} y g_{R}^{2}<D>\rightarrow m_{\tilde{S}} \sim 10^{5}--10^{6} \mathrm{GeV} \tag{3.12}
\end{equation*}
$$

with tiny gauge coupling strength.

- R-gauge bosons obtain masses at order $g_{R}\langle z\rangle$-several orders higher than sfermion masses.
- Singlet z_{i} do not enter the gauge kinetic function $f_{\alpha \beta}$, so gaugino mass can be generated by radiative corrections.
- R-Gauge nonsinglet S can also acquire scalar mass terms from D-term VEVs and gives the μ-term.
- Other terms from gravity mediation by assuming separated hidden and visible sector other than gravity.
- R-symmetry forbid unwanted B,L-violating terms.

Remarks

- An $S U(3)_{c}$ Octet is necessary to appear in low energy in order for $U(1)_{R}$ anomaly cancelation. Others choice is possible.
- It is possible to add GUT-preserving brane localized fields for the third generation to obtain anomaly free theory on the $y=0$ brane.
- By adding proper GUT group singlets with non-trivial R-charge, we can obtain consistent theory with $R[\Psi]=-1$ for the third generations.
- Such input can be used to obtain natural SUSY in the low energy.
- Still in progress.

Thank you!

