
Quantum Field Theory
Chapter 1, Homework & Solution

1. Show that the combination
d3p

2E
, with E =

√
→
p
2

+m2

which occurs frequently in phase space calculation integration is invariant under Lorentz transformation.
– – – – – – – – – – – – – – – – – – – – – – – – – – —
Solution: Under the Lorentz transformation in z-direction, we have the relations

p′z = γ (pz − βE)

E′ = γ (E − βpz)

Then
dp′z = γ (dpz − βdE)

From energy momentum relation, we get
EdE = pzdpz

and

dp′z = γ
(
dpz − β

pz
E
dpz

)
= γ

dpz
E

(E − βpz)

Hence
dp′z
E′

=
dpz
E

and
d3p′

2E′
=
d3p

2E

Alternatively, we can make use of the identity,∫
dp0δ

(
p20 − (

→
p
2

+m2
)
θ (p0) =

1

2

√
→
p
2

+m2

=
1

2E

to write
d3p

2E
= d4pδ

(
p2 −m2

)
which is clearly Lorentz invariant.
– – – – – – – – – – – – – – – – – —

2. Consider a system where 2 particles interacting with eac other through potential energy V
(→
x1 −

→
x2

)
so that

the Lagrangian is of the form,

L =
m1

2

(
d
→
x1
dt

)2
+
m2

2

(
d
→
x2
dt

)2
− V

(→
x1 −

→
x2

)
(a) Show that this Lagrangian is invariant under the spatial translation given by

→
x1 →

→
x
′
1 =

→
x1 +

→
a ,

→
x2 →

→
x
′
2 =

→
x2 +

→
a ,

where
→
a is an arbitrary vector.

(b) Use Noether’s theorem to construct the conserved quantity corresponding to this symmetry.
– – – – – – – – – – – – – – – – – – – —
Solution :
a) It is obvious that from

d
→
x
′
1

dt
=
d
→
x1
dt

,
d
→
x
′
2

dt
=
d
→
x2
dt

→
x
′
1 −

→
x
′
2 =

→
x1 −

→
x2

1



that L is invariant under translation.
b) For infinitesmal translation

δ
→
x1 =

→
a , δ

→
x2 =

→
a

From Noether’s theorem, the conserved charge is

Jiai =
∂L

∂ (∂0x1j)
δx1j +

∂L

∂ (∂0x2j)
δx2j = m1∂0x1jaj +m2∂0x2jaj

Or
Ji = m1∂0x1i +m2∂0x2i

This is the usual total momentum of this 2 particle system.
– – – – – – – – – – – – – –

3. Compute the following physical quantities in the right units.

(a) The total cross section for e+e− → µ+µ− at high energies is of the form,

σ
(
e+e− → µ+µ−

)
=

4πα2

3s
, s = 4E2, E :energy of e− in cm frame, α fine structure constant

Compute the cross section for the energies E = 100Gev, 7Tev

(b) The formula for the µ decay is given by

Γ
(
µ→ eν

_
ν
)

=
G2FM

3
µ

192π3
, GF is the Fermi constant, Mµ the proton mass

Compute the muon lifetime in seconds.
– – – – – – – – – – – —
Solution :
a) E = 100Gev

σ =
4πα2

3s
=

4× 3.14

3× 4× (100Gev)
2

(
1

137

)2
= 0.557× 10−8Gev−2

Use ~c = 1.973× 10−11Mev − cm we get

σ(100Gev) = 0.557× 10−8Gev−2 × (1.973× 10−11Mev − cm)2 = 3.89× 10−36cm2

E = 7Tev

σ (7Tev) = σ(100Gev)×
(

100Gev

7Tev

)2
= 3.89×

(
1

70

)2
= 8.4× 10−40cm2

b)

Γ
(
µ→ eν

_
ν
)

=
G2Fm

5
µ

192π3
=

(
1.166× 10−5Gev−2

)2
(105Mev)5

192× (3.14)
3 = 2.9× 10−19Gev

Use ~ = 6.58× 10−22Mev − sec

Γ = 2.9× 10−19Gev ×
(
6.58× 10−22Mev − sec

)−1
= 4.4× 105 sec−1

=⇒
1/Γ = 2.2× 10−6 sec

4. Construct the Lorentz transformation for motion of coordinate axis in arbitrary direction by using the fact that
coordinates perpendicualr to the direction of motion remain unchanged.
– – – – – – – – – – – – – –
Solution :
Let

→
v be the velocity of the coordinate system

→
x. We can decompose

→
x as

→
x =

→
x⊥ +

→
x‖, with

→
x‖ = (

→
x · v̂)v̂,

→
x⊥ =

→
x −→x‖ =

→
x − (

→
x · v̂)v̂

Under the Lorentz transformation with
→
v , we have

x′‖ = γ
(
x‖ − vx0

)
, x′0 = γ(x0 − vx‖),

→
x
′
⊥ =

→
x⊥

2



Or
(
→
x
′
· v̂) = γ[(

→
x · v̂)− vx0], x′0 = γ[x0 − v(

→
x · v̂)],

→
x
′
⊥ =

→
x⊥

These can be written as

→
x
′

=
→
x
′
⊥ +

→
x
′
‖ = (

→
x
′
· v̂)v̂ +

→
x
′
⊥ = γ[(

→
x · v̂)− vx0]v̂ +

→
x − (

→
x · v̂)v̂

=
→
x − vx0v̂ + (γ − 1) (

→
x · v̂)v̂

– – – – – – – – – – – – – – – – – – – – —

5. Electric and magnetic fields,
→
E,
→
B, combine into an antisymmetric second rank tensor unde the Lorentz trans-

formtion,

Fµν = ∂µAν − ∂νAµ with F 0i = ∂0Ai − ∂iA0 = −Ei, F ij = ∂iAj − ∂jAi = −εijkBk

These Minkowski tensors have the following property under the Lorentz transformation,

Fµν → F ′µν = ΛµαΛνβF
αβ , Λµα : matrix element of Lorentz transformation

Suppose an inertial frame O′ moves with respect to O with velocity v in the positive x-direction.

(a) Find the relations between the electric and magnetic fields,
→
E′,

→
B′,in the O′ and those in the O frame.

(b) Show that the combination
→
E ·
→
B, does not change from O to O′ frames.

(c) Show that the combination
→
E
2

−
→
B
2

, does not change either.

– – – – – – – – – – – – – – –
Solution:
a) For convenience write the Lorentz transformation as

Λµν =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

 with γ =
1√

1− β2

Then we get the transformation relation

E1′ = F
′10 = Λ11Λ

0
0F

10 + Λ10Λ
0
1F

01 = (γ2 − β2γ2)E1 = E1

E2′ = F
′20 = Λ22Λ

0
0F

20 + Λ22Λ
0
1F

21 = (γE2 − βγ
(
−B3

)
) = γE2 + βγB3

E3′ = F
′30 = Λ33Λ

0
0F

30 + Λ33Λ
0
1F

31 = (γE3 − βγB2) = γE3 − βγB2

B1′ = F
′23 = Λ22Λ

3
3F

23 = B1

B2′ = F
′31 = Λ33Λ

1
1F

31 + Λ33Λ
1
0F

30 = (γB2 − βγE3)

B3′ = F
′12 = Λ11Λ

2
2F

12 + Λ10Λ
2
2F

02 = (γB3 − βγ(−E2)) = γB3 + βγE2

b)

→
B
′
·
→
E′ = E1B1 +

(
γE2 + βγB3

)
(γB2 − βγE3) +

(
γE3 − βγB2

) (
γB3 + βγE2

)
= E1B1 + E2B2 + E3B3 =

→
B ·
→
E

c)

→
E
′2
−
→
B
′2

=
(
E1
)2

+
(
γE2 + βγB3

)2
+
(
γE3 − βγB2

)2 − (B1)2 − (γB2 − βγE3)2 − (γB3 + βγE2
)2

=
(
E1
)2

+
(
E2
)2

+
(
E3
)2 − (B1)2 − (B2)2 − (B3)2 =

→
E
2

−
→
B
2

______________________

3



Quantum Field Theory
Homework set 2, Solution

1. The Dirac Hamiltonian for free particle is given by

H =
→
α ·→p + βm

The angular momentum operator is of the form,

→
L =

→
r ×→p

(a) Compute the commutators, [
→
L, H

]
Is
→
L conserved?

(b) Define
→
S = − i

4

(→
α ×→α

)
and show that [

→
L +

→
S, H

]
= 0

(c) Show that
→
S satisfy the angular momentum algebra, i.e.

[Si, Sj ] = iεijkSk

and
→
S
2

=
3

4
.

– – – – – – – – – – – – – – – – – -
Solution :
a)

[L1,
→
α ·→p + βm] = [x2p3 − x3p2, α2p2 + α3p3] = −iα2p3 − (−iα3p2) = −i

(→
α ×→p

)
1

We can generalize this to [
→
L,

→
α ·→p + βm

]
= −i

(→
α ×→p

)
So
→
L is not conserved.

b)

[S1, H] = −
i

2

[
α2α3,

→
α ·→p + βm

]
It is easy to verify that

[α2α3, α1] = α2α3α1 − α1α2α3 = 0,
[α2α3, α2] = α2α3α2 − α2α2α3 = −2α3,

Similarly,
[α2α3, α3] = 2α2, [α2α3, β] = 0

Then

[S1, H] = −
i

2
2
(
−→α ×→p

)
1

Or
[
→
S,H] = i

→
α ×→p

So [
→
L +

→
S, H

]
= 0

i.e. the total angular momenta is conserved.
c)

[S1, S2] =

(
−i
2

)2
[α2α3, α3α1] = −

1

4
(α2α3α3α1 − α3α1α2α3) =

1

2
α1α2 = iS3

1



S21 =

(
−i
2

)2
α2α3α2α3 =

1

4

Then
→
S
2

=
3

4
, =⇒ S =

1

2

2. The Dirac spinors are of the form,

u (p, s) =
√
E +m

 1
→
σ ·→p
E +m

χs, v (p, s) =
√
E +m

 →
σ ·→p
E +m
1

χs s = 1, 2

where

χ1 =

(
1
0

)
, χ2 =

(
0
1

)
(a) Show that

_
u (p, s)u (p, s′) = 2mδss′ ,

_
v (p, s) v (p, s′) = −2mδss′

_
v (p, s)u (p, s′) = 0,

_
u (p, s) v (p, s′) = 0

v† (−p, s)u (p, s′) = 0, u† (p, s) v (−p, s′) = 0

(b) Show that ∑
s

uα (p, s)
_
uβ (p, s) = ( /p+m)αβ∑

s

vα (p, s)
_
vβ (p, s) = ( /p−m)αβ

Solution :
a)

_
u (p, s)u (p, s′) = (E +m)χ†s

(
1
−→σ ·→p
E +m

) 1
→
σ ·→p
E +m

χs

= (E +m)χ†s

(
1−

→
p
2

(E +m)
2

)
χs = 2mδss′

_
v (p, s) v (p, s′) = (E +m)χ†s

( →
σ ·→p
E +m

−1
) →

σ ·→p
E +m
1

χs′

= (E +m)χ†s

( →
p
2

(E +m)
2 − 1

)
χs = −2mδss′

_
u (p, s) v (p, s′) = (E +m)χ†s

(
1
−→σ ·→p
E +m

) →
σ ·→p
E +m
1

χs′ = 0

_
v (p, s)u (p, s′) = (E +m)χ†s

( →
σ ·→p
E +m

−1
) 1

→
σ ·→p
E +m

χs = 0

v† (−p, s)u (p, s′) = (E +m)χ†s
(
−
→
σ ·→p
E +m

1

) 1
→
σ ·→p
E +m

χs = 0

u† (p, s) v (−p, s′) = (E +m)χ†s
(
1

→
σ ·→p
E +m

) − →σ ·→pE +m
1

χs′ = 0

2



b)The spin sum for u−spinors,

∑
s

uα (p, s)
_
uβ (p, s) = (E +m)

(
1
~σ·~p
E+m

)∑
s

χsχ
†
s

(
1 − ~σ·~p

E+m

)
= (E +m)

(
1 − ~σ·~p

E+m
~σ·~p
E+m

−~p2
(E+m)2

)

=

(
E +m −~σ · ~p
~σ · ~p −E +m

)
= /p+m

where we have used ∑
s

χsχ
†
s =

(
1 0
0 1

)
Similarly for the v−spinor,

∑
s

vα (p, s)
_
vβ (p, s) = (E +m)

(
~σ·~p
E+m

1

)
χsχ

†
s

(
~σ·~p
E+m −1

)
= (E +m)

(
~p2

(E+m)2
− ~σ·~p
E+m

~σ·~p
E+m −1

)

=

(
E −m −~σ · ~p
~σ · ~p − (E +m)

)
= /p−m

3. Suppose a free Dirac particle at t=0, is described by a wavefunction,

ψ
(
0,
→
x
)
=

1

(πd2)
3/4

exp

(
− r2

2d2

)
ω

where d is some constant and

ω =


1
0
0
0


Compute the wavefunction for t 6= 0. What happens when d is very small?
– – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Solution :
Expand ψ

(
0,
→
x
)
in terms of spinors

ψ
(
0,
→
x
)
=
∑
s

∫
d3p√

(2π)
3
2Ep

[
b (p, s)u (p, s) ei

→
p ·→x + d† (p, s) υ (p, s) e−i

→
p ·→x
]

We can compute the expansion coeffi cients by the orthogonality properties

b (p, s) =

∫
d3xe−i

→
p ·→x√

(2π)
3
2Ep

u† (p, s)ψ
(→
x, 0

)
=

∫
d3xe−i

→
p ·→x√

(2π)
3
2Ep

u† (p, s)ω
1

(πd2)
3/4

exp

(
− r2

2d2

)

The Fourier transform of the Gaussian wave packet can be calculated as follows,∫
d3xe−i

→
p ·→x exp

(
−
→
x
2

2d2

)
=

∫
d3x exp[− 1

2d2
(
→
x + i

→
pd2)2 −

→
p
2
d2

2
]

= exp(−
→
p
2
d2

2
)

∫
d3x exp[− 1

2d2
(
→
x)2] = exp(−

→
p
2
d2

2
)(
√
2πd)3

where we have used ∫
dxe−x

2

=
√
π

b (p, s) =
√
Ep +mδs1 exp(−

→
p
2
d2

2
)

1√
2Ep

1

π3/4

Similarly

d† (p, s) =

∫
d3xe−ip·x√
(2π)

3
2Ep

υ† (p, s)ψ
(→
x, 0

)
=

∫
d3xe−i

→
p ·→x√

(2π)
3
2Ep

v† (p, s)ω
1

(πd2)
3/4

exp

(
− r2

2d2

)

3



v† (p, s)ω =
√
E +mχ†s

( →
σ ·→p
E +m

1

)
1
0
0
0

 = χ†s

(
pz

px + ipy

)

and

d† (p, s) =
√
Ep +m exp(−

→
p
2
d2

2
)

1√
2Ep

1

π3/4
χ†s

(
pz

px + ipy

)
1

E +m

For non-zero t we get

ψ
(
t,
→
x
)
=
∑
s

∫
d3p√

(2π)
3
2Ep

[
b (p, s)u (p, s) e−iEptei

→
p ·→x + d† (p, s) υ (p, s) eiEpte−i

→
p ·→x
]

Note that ∣∣∣∣d† (p, s)b (p, s)

∣∣∣∣ ∼ p

E +m

This shows that the negative energy amplitude becomes appreciable when p ∼ m.

4. Consider a 2× 2 hermitian matrix defined by

X = x0 +
→
σ ·→x

where
→
σ = (σ1, σ2, σ3) are Pauli matrices and

(
x0,
→
x
)
are space-time coordinates.

(a) Compute the determinant of X

(b) Suppose U is a 2× 2 matrix with detU = 1. Define a new 2× 2 matrix by a similarity transformation,

X ′ = UXU†

Show that X ′ can be written as
X ′ = x′0 +

→
σ ·→x

′

(c) Show that the relation between
(
x0,
→
x
)
and

(
x′0,
→
x
′)
is a Lorentz transformation.

(d) Suppose U is of the form,

U =

(
eiα 0
0 e−iα

)
Find the relation between

(
x0,
→
x
)
and

(
x′0,
→
x
′)
.

– – – – – – – – – – – –
Solution:
a)

X =

(
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

)
detX = x20 − x21 − x22 − x23

b) Note that X is Hermitian,

X† =
(
x0 +

→
σ ·→x

)†
= x0 +

→
σ ·→x

So is X ′

X ′† =
(
UXU†

)†
= UX†U† = UXU† = X

′

Expand X ′ in terms of complete set of 2× 2 Hermitian matrices,

X ′ = x′0 +
→
σ ·→x

′

c)From the invariance of the determinant

detX ′ = det(UXU†) = detU (detX) detU† = detX

we see that
x20 − x21 − x22 − x23 = x′20 − x′21 − x′22 − x′23

4



So the relation between
(
x0,
→
x
)
and

(
x′0,
→
x
′)
is a Lorentz transformation.

d)

X ′ = UXU† =

(
eiα 0
0 e−iα

)(
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

)(
e−iα 0
0 eiα

)
=

(
(x0 + x3) e2(iα) (x1 − ix2)

e2(−iα) (x1 + ix2) (x0 − x3)

)
This correspond to a rotation z − axis.
Note that U is not necessarily unitary. In fact the Lorentz boost correspond to

U ==

(
eα 0
0 e−α

)
which gives

UXU† =

(
eα 0
0 e−α

)(
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

)(
eα 0
0 e−α

)
=

(
e2α (x0 + x3) (x1 − ix2)
(x1 + ix2) e−2α (x0 − x3)

)
This implies

x
′

0 = cosh 2α x0 + sinh 2α x3

x
′

3 = sinh 2α x0 + cosh 2α x

For the Lorentz boost along x−axis, we can first rotate π
2
about y-axis using

Uy (β) =

 cos
β

2
− sin β

2

sin
β

2
cos

β

2

 =

(
1 −1
1 1

)
for β =

π

2

hen

X2 = U†y (β)XUy (β) =
1

2

(
1 1
−1 1

)(
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

)(
1 −1
1 1

)
=

(
x0 + x1 −ix2 − x3
ix2 − x3 x0 − x1

)
and

X3 = U†X2U =

(
eα 0
0 e−α

)(
x0 + x1 −ix2 − x3
ix2 − x3 x0 − x1

)(
eα 0
0 e−α

)
=

(
e2α (x0 + x1) − (ix2 + x3)
− (x3 − ix2) e−2α (x0 − x1)

)

X4 = U†y (−β)X3Uy (−β) =
1

2

(
1 −1
1 1

)(
e2α (x0 + x1) − (ix2 + x3)
− (x3 − ix2) e−2α (x0 − x1)

)(
1 1
−1 1

)

=

 x3 +
1

2
e−2α (x0 − x1) +

1

2
e2α (x0 + x1)

1

2
e2α (x0 + x1)−

1

2
e−2α (x0 − x1)− ix2

ix2 −
1

2
e−2α (x0 − x1) +

1

2
e2α (x0 + x1)

1

2
e−2α (x0 − x1)− x3 +

1

2
e2α (x0 + x1)


x′0 =

1

2
e−2α (x0 − x1) +

1

2
e2α (x0 + x1) = cosh 2αx0 + sinh 2αx1

x′3 = x3, x′2 = x2

x′1 = −
1

2
e−2α (x0 − x1) +

1

2
e2α (x0 + x1) = sinh 2αx0 + cosh 2αx1

5



5. Dirac particle in the presence of electromagnetic field satisfies the equation,

[γµ (i∂µ − eAµ)−m]ψ (x) = 0

Or

i
∂ψ

∂t
=

[
→
α ·
(
→
p − e

→
A

)
+ βm+ eφ

]
ψ

In the non-relativistic limit, we can write

ψ (x) = e−imt
(
u
l

)
Show that the upper component satisfies the equation,

i
∂u

∂t
=

[
1

2m

(
→
p − e

→
A

)2
− e

2m

→
σ ·
→
B + eφ

]
u

For the case of weak uniform magnetic field
→
B we can take

→
A =

1

2

→
B ×→r . Show that

i
∂u

∂t
=

[
1

2m

(→
p
)2
− e

2m

(
→
L + 2

→
S

)
·
→
B

]
u.

– – – – – – – – – – – – – – – – – – –
Solution:
In non-relativistic limit, Dirac equation becomes i

∂u

∂t
+mu

i
∂l

∂t
+ml

 =

 m+ eφ
→
σ ·
(
→
p − e

→
A

)
→
σ ·
(
→
p − e

→
A

)
−m+ eφ

( u
l

)

Or

i
∂u

∂t
= (eφ)u+

→
σ ·
(
→
p − e

→
A

)
l

i
∂l

∂t
=
→
σ ·
(
→
p − e

→
A

)
u+ (−2m+ eφ) l

From the 2nd equation, we get

l =
1

2m

→
σ ·
(
→
p − e

→
A

)
u

where we have neglected eφ and
∂l

∂t
.Substitute this into first equation we get

i
∂u

∂t
= (eφ)u+

1

2m

[
→
σ ·
(
→
p − e

→
A

)]2
u

Using the identity (
→
σ ·
→
A

)(
→
σ ·
→
B

)
=
→
A ·
→
B + i

→
σ ·
(
→
A ×

→
B

)
we get [

→
σ ·
(
→
p − e

→
A

)]2
=

(
→
p − e

→
A

)2
+ i
→
σ ·
(
→
p − e

→
A

)
×
(
→
p − e

→
A

)
Since

→
p and e

→
A we get(

→
p − e

→
A

)
×
(
→
p − e

→
A

)
= −e

(
→
A ×→p +→p ×

→
A

)
= +ie

→
∇×

→
A = ie

→
B

Then the equation becomes

i
∂u

∂t
=

[
1

2m

(
→
p − e

→
A

)2
− e

2m

→
σ ·
→
B + eφ

]
u

6



For weak field, we get(
→
p − e

→
A

)2
= p2 − e

(
→
p ·
→
A +

→
A ·→p

)
= p2 − e

(
−i
→
∇ · 1

2

→
r ×

→
B

)
= p2 − e

(
→
B · 1

2

→
p ×→r

)
= p2 − 1

2
e

(
→
B ·
→
L

)
and

i
∂u

∂t
=

[
1

2m

(→
p
)2
− e

2m

(
→
L + 2

→
S

)
·
→
B

]
u.

6. a†1, a
†
2, a1, a2 are creation and annihilation operators satifying the commutation relations[

ai, a
†
j

]
= δij , [ai, aj ] = 0, i, j = 1, 2

Define
J+ = a†1a2, J− = (J+)

†
, J3 =

1

2

(
a†1a1 − a

†
2a2

)
(a) Compute the commutators

[Jx, Jy] , [Jy, Jz] , [Jz, Jx]

where Jx ≡
1

2
(J+ + J−) , Jy ≡

1

2i
(J+ − J−)

(b) Define the state |0〉 by
ai |0〉 = 0, for i = 1, 2

Let the state |n1, n2〉 be
|n1, n2〉 =

1
√
n1!n2!

(
a†1

)n1 (
a†2

)n2
|0〉

Show that this state is an eigenstate of J3 and compute the eigenvalue.

(c) Show that this is also eigen state of J2 = J21 + J
2
2 + J

2
3 and compute the eigenvalue.

(d) Show that the state J+ |n1, n2〉 is an eigenstate of J3. What is the eigenvalue?
– – – – – – – – – – – – – – —a)

[J+, J3] =
1

2

[
a†1a2,

(
a†1a1 − a

†
2a2

)]
=
1

2

(
−2a†1a2

)
= −J+

Similarly
[J−, J3] = J−

Also
[J+, J−] = [a

†
1a2, a

†
2a1] =

(
a†1a1 − a

†
2a2

)
= 2J3

Then
[J1, J3] =

1

2
[J+ + J−, J3] =

1

2
(−J+ + J−) =

1

2
(−2iJ2) = −iJ2

and
[J2, J3] =

1

2i
[J+ − J−, J3] =

1

2i
(−J+ − J−) =

1

2i
(−2J1) = iJ1

The other commutator is

[J1, J2] =
1

4i
[J+ + J−, J+ − J−] =

1

4i
(−2× 2J3) = iJ3

Define the number operators
N1 = a†1a1, N2 = a†2a2

Then we can derive [
N1, a

†
1

]
=
[
a†1a1, a

†
1

]
= a†1, · · ·

[
N1,

(
a†1

)n]
= n

(
a†1

)n
and [

N2,
(
a†2

)n]
= n

(
a†2

)n
7



From this we see that

N1 |n1, n2〉 =
1

√
n1!n2!

N1

(
a†1

)n1 (
a†2

)n2
|0〉 = n1 |n1, n2〉

where we have used
N1 |0〉 = 0

Similarly,
N2 |n1, n2〉 = n2 |n1, n2〉

Then
J3 |n1, n2〉 = (N1 −N2) |n1, n2〉 = (n1 − n2) |n1, n2〉

We can write
→
J
2

as
→
J
2

=
1

2
[J+J− + J−J+] + J

2
3

We can write J+, J− in term of number operators as

J+J− = a†1a2a
†
2a1 = a†1(1 + a

†
2a2)a1 = N1 (1 +N2)

and
J+J− = N2 (1 +N1)

So

→
J
2

=
1

2
[J+J− + J−J+] + +J

2
3 =

1

2
[(N1 +N2) + 2N1N2] +

1

4
(N1 −N2)2

=
1

4
(N1 +N2) (N1 +N2 + 2)

and
→
J
2

|n1, n2〉 =
1

4
(n1 + n2) ((n1 + n2 + 2)) |n1, n2〉

This implies that

J =
1

2
(n1 + n2)

d) From
[J+, J3] = −J+

we see that
J3(J+ |n1, n2〉) = (n1 − n2 + 1) (J+ |n1, n2〉)

Furthermore

J+ |n1, n2〉 = a†1a2 |n1, n2〉 =
1

√
n1!n2!

(
a†1

)n1+1
a2

(
a†2

)n2
|0〉

Use

[a2,
(
a†2

)n2
] = n2

(
a†2

)n2−1
we get

J+ |n1, n2〉 =
1

√
n1!n2!

(
a†1

)n1+1
n2

(
a†2

)n2−1
|0〉 =

√
(n1 + 1) (n2) |n1 + 1, n2 − 1〉

From
J =

1

2
(n1 + n2) , m =

1

2
(n1 − n2)

we see that
n1 = J +m, n2 = J −m

and
J+ |n1, n2〉 =

√
(J +m+ 1) (J −m) |n1 + 1, n2 − 1〉

8



Quantum Field Theory
Homework 3 solution

1. The Dirac equation for free particle is given by,

(iγµ∂µ −m)ψ (x) = 0

Under the parity transformation the space-time coordiante transform as

xµ → x′µ = (x0,−x1,−x2,−x3)

The Dirac equation in the new coordinate system is of the form,(
iγµ∂′µ −m

)
ψ′ (x′) = 0

Find the relation between ψ (x) and ψ′ (x′) .

– – – – – – – – – – – – – – – – – – – – – – – – —
Solution: For the parity transformation, the Lorentz transformation is of the form,

Λνµ =


1
−1

−1
−1


Then from

S−1γµS = Λνµγν

we see that
S−1γ0S = γ0, S−1γiS = −γi, i = 1, 2, 3

Clearly,
S = γ0, and ψ′ (x′) = γ0ψ (x)

It is easy to see that
_

ψ
′
ψ′ =

_

ψψ,
_

ψ
′
γ5ψ

′ = −
_

ψγ5ψ,
_

ψ
′
γµψ

′ =
_

ψγµψ,
_

ψ
′
γµγ5ψ

′ = −
_

ψγµγ5ψ,
_

ψ
′
σµνψ

′ =
_

ψσµνψ,

2. The left-handed and right-handed components of a Dirac particle are defined by,

ψL ≡
1

2
(1− γ5)ψ, ψR ≡

1

2
(1 + γ5)ψ

where γ5 is defined by
γ5 ≡ γ5 = iγ0γ1γ2γ3

(a) Show that
{γ5, γµ} = 0, and γ25 = 1

(b) Show that ψL, ψR are eigenstates of γ5 matrix. What are the eigenvalues?

(c) Are they eigenstates of parity operator?

(d) Write the u spinor in the form,

u (p, s) = N

(
1

→
σ ·→p
E+m

)
χs

where N is some normalization constant and χs is an arbitrary 2 component spinor.
Show that if we choose χs to be eigenstate of

→
σ ·→p ,(→
σ · p̂

)
χs =

1

2
χs

then u (p, s) is an eigenstate of the helicity operator λ =
→
S · p̂ where

→
S is the spin operator given by

→
S =

1

2

( →
σ 0

0
→
σ

)

1



– – – – – – – – – – – – – – – – – – -

Solution:
a)

{γ5, γ0} = i{γ0γ1γ2γ3, γ0} = i(γ0γ1γ2γ3γ0 + γ0γ0γ1γ2γ3) = i(−γ1γ2γ3 + γ1γ2γ3) = 0

γ25 = i2
(
γ0γ1γ2γ3

) (
γ0γ1γ2γ3

)
= − (−)

(
γ1γ2γ3

) (
γ1γ2γ3

)
= (−)

(
γ2γ3

)
γ2γ3

= (−)
(
γ2γ3

)
γ2γ3 = −

(
γ3
)2

= 1

b)

γ5ψL ≡ γ5
1

2
(1− γ5)ψ =

1

2
(γ5 − 1)ψ = −ψL

Similarly
γ5ψR = ψR

c) Under the parity we have
Pψ = γ0ψ

Then
PψL = γ0ψL = ψR, PψR = γ0ψR = ψL

d) In the standard representation

γ5 =

(
0 1
1 0

)
Thus

uL (p) =
1

2
(1− γ5)u (p,−) = N

1

2

(
1 −1
−1 1

)(
1

→
σ ·→p
E+m

)
χ−

= N
1

2

(
1 −1
−1 1

)(
1
−p
E

)
χ− = N

1

2

(
E + p

E

)(
1
−1

)
χ− = N

(
1
−1

)
χ−

3. Consider a one-dimensional string with length L which satisfies the wave equaiton,

∂2φ

∂x2
=

1

v2
∂2φ

∂t2

(a) Find the solutions of this wave equation with the boundary conditions,

φ (0, t) = φ (L, t) = 0

(b) Find the Lagrangian density which will give this wave equation as the equation of motion.

(c) From the Lagrangian density find the conjugate momenta and impose the quantization conditions. Also
find the Hamiltonian.

(d) Find the eigenvalues of the Hamiltonian.
– – – – – – – – – – – – – – – – – – – – – -
Solution :
a)Write φ (x, t) = ψ (x) e−iEt.Then

∂2ψ

∂x2
= −E

2

v2

Plane wave solution φ = eikx, gives
E2 = v2k2

Or
E = ±ω, ω = kv

For the boundary condition ψ(0) = ψ(L) = 0,we take

ψn (x) =

√
2

L
sin

nπx

L

2



so that ∫ L

0

ψn (x)ψm (x) dx = δnm

Note that the energy eigenvalues are

En = ±ωn, ωn =
nπv

L

b)The Lagrangian density is

L =
1

2
(∂tφ)

2 − v2

2
(∂xφ)

2

Euler-Lagrange Eq

∂x
∂L

∂ (∂xφ)
− ∂t

∂L
∂ (∂tφ)

= 0, =⇒ ∂2φ

∂x2
=

1

v2
∂2φ

∂t2

c)Conjugate mometua

π (x, t) =
∂L

∂ (∂tφ)
= (∂tφ)

Hamiltonian

H = πφ− L =
1

2
(∂tφ)

2
+
v2

2
(∂xφ)

2

Commutation relations
[φ (x, t) , ∂tφ (y, t)] = iδ (x− y)

d) Mode expansion

φ (x, t) =
∑
n

√
2

L

[
an sin

nπx

L
e−iωnt + a†n sin

nπx

L
eiωnt

] 1√
2ωn

∂tφ (x, t) =
∑
n

√
2

L
(−iωn)

[
an sin

nπx

L
e−iωnt − a†n sin

nπx

L
eiωnt

] 1√
2ωn

an =
i√
2ωn

∫ L

0

dx [(−iωn)φ (x, t) + ∂tφ (x, t)]

√
2

L
sin

nπx

L
eiωnt

Then [
an, a

†
m

]
=

1√
2ωn2ωm

∫ L

0

dxdy

(
2

L

)
sin

nπx

L
e−iωnt sin

nπy

L
eiωmt

[(−iωn)φ (x, t) + ∂tφ (x, t) , (iωm)φ (y, t) + ∂tφ (y, t)]

Or [
an, a

†
m

]
=

1√
2ωn2ωm

∫ L

0

dx

(
2

L

)
sin

nπx

L
e−iωnt sin

mπx

L
eiωmt (ωn + ωm)

= δnm

Hamiltonian is

H =

∫ L

0

dx

[
1

2
(∂tφ)

2
+
v2

2
(∂xφ)

2

]
The first term is∫ L

0

dx
1

2
(∂tφ)

2
=

∑
n,m

2

L
(−ωn) (ωm)

1√
2ωn

1√
2ωm

∫ L

0

dx sin
nπx

L
sin

mπx

L

[
ane
−iωnt − a†neiωnt

]
×
[
ame

−iωmt − a†meiωmt
]

=
1

2

∑
n

(−ωn)
1

2

[
anane

−2iωnt + a†na
†
ne
2iωnt − ana†n − a†nan

]
and the second term is

v2
∫ L

0

dx
1

2
(∂xφ)

2
=

∑
n,m

2

L

(nπ
L

)(mπ
L

) 1√
2ωn

1√
2ωm

∫ L

0

dx cos
nπx

L
cos

mπx

L

[
ane
−iωnt + a†ne

iωnt
]
×
[
ame

−iωmt + a†me
iωmt

]
=

1

2
v2
∑
n

(nπ
L

)2 1

2ωn

[
anane

−2iωnt + a†na
†
ne
2iωnt + ana

†
n + a†nan

]
3



The Hamiltonian is then

H =

∫ L

0

dx

[
1

2
(∂tφ)

2
+
v2

2
(∂xφ)

2

]
=

1

2

∑
n

ωn
(
ana

†
n + a†nan

)
4. Consider the Lagrangian density given by

L =
1

2
∂µφ∂

µφ− 1

2
µ2φ2 + J (x)φ, J (x) arbitray function

(a) Show that the equation of motion is of the form,(
∂µ∂µ + µ2

)
φ (x) = J (x)

(b) Find the conjugate momenta and impose the quantization conditions.

(c) Find the creation and annihilation operators.
– – – – – – – – – – – – – – – – – – – – –
Solution:
a) Equation of motion

∂µ
∂L

∂ (∂µφ)
=
∂L
∂φ

, =⇒ ∂µ∂µφ+ µ2φ = Jφ,

b)
Conjugate momentum

π =
∂L

∂ (∂0φ)
= ∂0φ

Quantization
[φ (x, t) , π (y, t)] = iδ3 (x− y)

Define (
∂µ∂µ + µ2

)
∆ (x− y) = δ4 (x− y)

Then

φ (x) = φ0 (x) +

∫
∆ (x− y) J (y) d4y = φ0 (x) + φcl (x)

where φ0 (x) satisfies the homogeneous equaiton(
∂µ∂µ + µ2

)
φ0 (x) = 0

and

φcl (x) =

∫
∆ (x− y) J (y) d4y

So φ0 (x) can be expanded in terms of plane waves

φ0 (x) =

∫
d3p√

(2π)
3

2ωp

[
a (p) e−ipx + a† (p) eipx

]
Then we can solve for a (p) to write

a (p) =

∫
d3x√

(2π)
3

2ωp

{
eipx

↔
∂0φ0 (x)

}

=

∫
d3x√

(2π)
3

2ωp

{
eipx

↔
∂0

(
φ (x)−

∫
∆ (x− y) J (y) d4y

)}
Note that the last term is a c-number and will not effect the commutation relation.
We can write the action as

S =

∫
d4xL =

∫
d4x

[
−1

2
φ
(
∂2 + µ2

)
φ+ Jφ

]
=

∫
d4x

[
−1

2
(φ0 + φcl)

(
∂2 + µ2

)
(φ0 + φcl) + J (φ0 + φcl)

]
=

∫
d4x

[
−1

2
φ0
(
∂2 + µ2

)
φ0 − φ0

((
∂2 + µ2

)
φcl − J

)
− 1

2
φcl
(
∂2 + µ2

)
φcl + Jφcl

]
=

∫
d4x

[
−1

2
φ0
(
∂2 + µ2

)
φ0 −

1

2
φcl
(
∂2 + µ2

)
φcl + Jφcl

]

4



Note that (
∂2 + µ2

)
φcl = J

We get

S =

∫
d4x

[
−1

2
φ0
(
∂2 + µ2

)
φ0 + Jφcl

]
5. Let φ be a free scalar field satisfying the field equation,(

∂µ∂µ + µ2
)
φ (x) = 0

(a) Show that the propagator defined by

∆F (x− y) ≡ 〈0 |T (φ (x)φ (y))| 0〉 = θ (x0 − y0)φ (x)φ (y) + θ (y0 − x0)φ (y)φ (x)

can be written as

∆F (x− y) =

∫
d4k

(2π)
4 e
ik·(x−y) i

k2 − µ2 + iε

(b) Show that the unequal time commutator for these free fields is given by

i∆ (x− y) ≡ [φ (x) , φ (y)] =

∫
d3k

(2π)
3

2ωk

[
e−ik·(x−y) − eik·(x−y)

]
(c) Show that ∆ (x− y) = 0 for space-like separation, i.e.

∆ (x− y) = 0, if (x− y)
2
< 0

– – – – – – – – – – – – – – – – – – – – – – – –
Solution:
a)

i∆ (x, y) = 〈0 |T (φ (x)φ (y))| 0〉
= θ (x0 − y0) 〈0 |φ (x)φ (y)| 0〉+ θ (y0 − x0) 〈0 |φ (y)φ (x)| 0〉

Using the mode expansion, we see that

〈0 |φ (x)φ (y)| 0〉 =

∫
d3kd3k′

(2π)3
√

2ωk2ωk′

〈
0
∣∣∣[a(k)e−ikx]a+(k′)eik

′y
∣∣∣ 0〉

=

∫
d3kd3k′

(2π)32ωk
δ3 (k − k′) e−ikx+ik

′y =

∫
d3k

(2π)32ωk
e−ik(x−y)

i∆ (x, y) =

∫
d3k

(2π)32ωk

[
θ (x0 − y0) e−ik(x−y) + θ (y0 − x0) eik(x−y)

]
Note that

1

2π

∫
dk0

k20 − ω2 + iε
e−ik0(x0−yx

′) =

{
−i 12ω e

−iω(x0−y0) for x0 > y0
−i 12ω e

iω(x0−y0) for x0 < y0

We then get∫
d4k

(2π)
4

e−ik·(x
′−y)

k2 + iε
= −i

∫
d3k

(2π)32ωk

[
θ(t− t′)e−ik(x−x

′) + θ(t− t′)eik(x−x
′)
]

= i∆ (x, y)

b) From part a) we see immediately that

i∆ (x− y) ≡ [φ (x) , φ (y)] =

∫
d3k

(2π)
3

2ωk

[
e−ik·(x−y) − eik·(x−y)

]
c) For space like separation (x− y)

2
< 0, we can chose a frame such that x−y has only spatial component

x− y =
(

0,
→
x −→y

)
.Then

[φ (x) , φ (y)] =

∫
d3k

(2π)
3

2ωk

[
e
i
→
k ·
(→
x−→y

)
− e−i

→
k ·
(→
x−→y

)]
= 0

where we have change the integration variable
→
k to −

→
k in the second term.
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Quantum Field Theory

Ling-Fong Li

December 5, 2014

Homework set 4, Solution
1. Dirac equation for electron moving in the electromagnetic field can be obtained from the free Dirac equation
by the replacement i∂µ −→ i∂µ − eAµ,

[γµ (i∂µ − eAµ)−m]ψ
(→
x, t
)

= 0

Then the equation for the positron is

[γµ (i∂µ + eAµ)−m]ψc

(→
x, t
)

= 0

Assume that ψc is related to ψ by
ψc = C̃ψ∗

C̃ is called the charge conjugation matrix.

(a) Find C̃ in terms of Dirac γ matrices.

(b) For the v−spinor of the form,

v (p, s) = N

( →
σ ·→p
E+m

1

)
χs

Compute its charge conjugate vc (p, s) = C̃v∗ (p, s)

(c) To implement the charge conjugation for the fermion field, we write

ψc = CψC−1 = C̃ψ∗

where C is the charge conjugation operator. Find the relation between
_

ψcγ
µψc and

_

ψγµψ.
Solution:
a) Dirac equation for a charged particle in em field is of the form,

[γµ (i∂µ − eAµ)−m]ψ = 0

On the other hand the equation for positron is

[γµ (i∂µ + eAµ)−m]ψc = 0

Take the complex conjugate of Dirac equation we get[
− (γµ)

∗
(i∂µ + eAµ)−m

]
ψ∗ = 0

If we assume ψc is related to ψ
∗ by

ψc = C̃ψ∗

then
C̃−1γµC̃ = −γµ∗

In the standard notation where γ0, γ1, γ3 are real and γ2 is imaginary, C̃ can be taken as

C̃ = iγ2 =

(
0 −iσ2
iσ2 0

)
which has the properties,

C̃−1 = C̃† = C̃

1



b) From the v − spinor of the form,

v (p, s) = N

 →
σ ·→p
E +m

1

χs, s = ±

we get

vc (p, s) = C̃v∗ (p, s) =

(
0 −iσ2
iσ2

)
N

 →
σ
∗
·→p

E +m
1

χ∗s = N

 −iσ2

iσ2

(→
σ
∗
·→p

E +m

) χs

= N

 1
→
σ ·→p
E +m

 (−iσ2χs) = N

 1
→
σ ·→p
E +m

 (s)χ−s = (s)u (p,−s)

where we have used the relations

σ2
→
σ
∗
σ2 = −→σ , −iσ2χs = (s)χ−s

Note that the spin component is flipped under charge conjugation.
In terms of creation and annihilation operators, we have

ψ =
∑
s

∫
d3p√

(2π)
3

2Ep

[
b (p, s)u (p, s) e−ip·x + d† (p, s) v (p, s) eip·x

]
and the charge conjugate field is

ψc = C̃
(
ψ†
)T

=
∑
s

∫
d3p√

(2π)
3

2Ep

[
b† (p, s) C̃u∗ (p, s) eip·x + d (p, s) C̃v∗ (p, s) e−ip·x

]

=
∑
s

∫
d3p√

(2π)
3

2Ep

[
b† (p, s) v (p,−s) eip·x + d (p, s)u (p,−s) e−ip·x

]
Write

ψc = CψC−1

then
Cb (p, s)C−1 = d (p,−s) , Cd† (p, s)C−1 = b† (p,−s)

c) From
ψc = C̃ψ∗

we get
ψ†c = ψT C̃†, and

_

ψc = ψT C̃†γ0 (1)

Then
_

ψcγ
µψc = ψT C̃†γ0γ

µC̃ψ∗ = ψT γ0

(
−C̃†γµC̃

)
ψ∗ = ψT γ0 (γµ)

∗
ψ∗

=
[
ψT γ0 (γµ)

∗
ψ∗
]T

= ψ† (γµ)
†
γ0ψ = −

_

ψγµψ

where we have used the property that fermion fields anti-commute. This means the 4-vector current for
the anti particles is negative of that for the particle. In other words, the 4-vector current is odd under
charge conjugation.
Similarly for the scalar current we have

_

ψcψc = ψT C̃†γ0C̃ψ
∗ = ψT γ0

(
−C̃†C̃

)
ψ∗ = −ψT γ0ψ∗

= −
[
ψT γ0ψ

∗
]T

= ψ†γ0ψ =
_

ψψ

and for the psudoscalar current
_

ψcγ5ψc = ψT C̃†γ0γ5C̃ψ
∗ = ψT γ0γ5

(
C̃†C̃

)
ψ∗ = ψT γ0γ5ψ

∗

=
[
ψT γ0γ5ψ

∗
]T

= −ψ†γ5γ0ψ =
_

ψγ5ψ

2



This shows that the scalar current is even under charge conjugation.

_

ψcγ
µγ5ψc = ψT C̃†γ0γ

µγ5C̃ψ
∗ = ψT γ0

(
−C̃†γµγ5C̃

)
ψ∗ = −ψT γ0 (γµ)

∗
γ5ψ

∗

= −
[
ψT γ0 (γµ)

∗
γ5ψ

∗
]T

= ψ†γ5 (γµ)
†
γ0ψ =

_

ψγµγ5ψ

2. Consider a free scalar field φ (x) where the 4-momentum operator is of the form,

Pµ =

∫
d3k kµa† (k) a (k)

(a) As a useful tool, show that for two operators A and B, the following identity holds

eABe−A = B + [A,B] +
1

2
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + · · ·

(b) Use this identity to show that
eiP ·xa (k) e−iP ·x = a (k) e−ik·x

and
[Pµ, φ (x)] = i∂µφ (x)

(c) Let |K〉 be an eigenstate of Pµ, satisfying Pµ |K〉 = Kµ |K〉 . Show that

〈K |φ (x)φ (y)|K〉 = 〈K |φ (x− y)φ (0)|K〉

Solution :
a) consider the function F (λ) defined as

F (λ) = eλABe−λA

Then
dF

dλ
= eλA[A,B]e−λA,

d2F

dλ2
= eλA[A, [A,B]]e−λA, · · ·

On the other hand, Taylor expansion of F (λ) ,gives

F (λ) = F (0) + λ
dF

dλ
|λ=0 +

λ2

2!

d2F

dλ2
|λ=0 + · · ·

Setting λ = 1, we get

eABe−A = B + [A,B] +
1

2
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + · · ·

b) From the identity in a) we get

eiP ·xa (k) e−iP ·x = a (k) + ixµ [Pµ, a (k)] +
1

2
xνxµ[Pν , [Pµ, a (k)]] + · · ·

Now we calculate the commutators,

[Pµ, a (k)] =

∫
d3k′ k′µ[a† (k′) a (k′) , a (k)] = kµa (k)

and
[Pν , [Pµ, a (k)]] = kµkνa (k)

Then

eiP ·xa (k) e−iP ·x = a (k)

[
1 + ik · x+

1

2
(ik · x)

2
+ · · ·

]
= eik·xa (k)

Take Hermitian conjugate we get

eiP ·xa† (k) e−iP ·x = e−ik·xa† (k)

3



From the formula for Pµ and

φ (x) =

∫
d3p√

2ωp (2π)
3

[
a (p) e−ipx + a† (p) eipx

]
we get

[Pµ, φ (x)] =

∫
d3p√

2ωp (2π)
3

∫
d3k′ k′µ[a† (k′) a (k′) , a (p) e−ipx + a† (p) eipx]

=

∫
d3p√

2ωp (2π)
3

∫
d3k′ k′µ[a (k′) e−ipx − a† (p) eipx]δ3 (p− k′)

=

∫
d3p√

2ωp (2π)
3
pµ[a (p) e−ipx − a† (p) eipx] = i∂µφ

From this we can show that

eiP ·aφ (x) e−iP ·a = φ (x) + iaµ [Pµ, φ (x)] + · · · = φ (x− a)

c) Write
φ(y) = e−iP ·yφ (0) eiP ·y

Then

〈K |φ (x)φ (y)|K〉 =
〈
K
∣∣φ (x) e−iP ·yφ (0) eiP ·y

∣∣K〉 =
〈
K
∣∣e−iP ·yeiP ·yφ (x) e−iP ·yφ (0)

∣∣K〉 eiK·y
= e−iK·y 〈K |φ (x− y)φ (0)|K〉 eiK·y = 〈K |φ (x− y)φ (0)|K〉

3. The propagator for a massless scalar field can be written in the form,

∆F (x) =

∫
d4x

(2π)
4

eik·x

k2 + iε

Carrying out the integration to show that

∆F (x) =
i

4π2
1

x2 − iε

– – – – – – – – – – – – – – – -
Solution:

∆F (x) =

∫
d4x

(2π)
4

eik·x

k2 + iε
=

∫
d3k

(2π)
4 e
i
→
k ·→x

∫
dk0e

−ik0x0

k20 −
→
k
2

+ iε

The k0 integration can be performed by the standard contour method,∫
dk0e

−ik0x0

k20 −
→
k
2

+ iε

=
−iπ∣∣∣∣→k ∣∣∣∣ [θ (x0) e

−i
∣∣∣∣→k ∣∣∣∣x0

+ θ (−x0) e
i

∣∣∣∣→k ∣∣∣∣x0
]

We then have

∆F (x) = − 1

8π2r

∫ ∞
0

dk
(
eikr − e−ikr

)
[θ (x0) e

−ikx0 + θ (−x0) eikx0 ]

Using the identity ∫ ∞
0

e±iατdτ =

∫ ∞
0

e±i(α±iε)τdτ =
∓1

i (α± iε)
we get

∆F (x) = − 1

8π2r

[
θ (x0)

(
1

r − x0 + iε
+

1

r + x0 − iε

)
+ θ (−x0)

(
1

r + x0 + iε
+

1

r − x0 − iε

)]
=

−i
4π2

[
θ (x0)

r2 − x20 + iεx0
+

θ (−x0)
r2 − x20 − iεx0

]
=

i

4π2
1

(x2 − iε)
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4. In thequantization of free electromagnetic fields the mode expansion is of the form,

→
A(~x, t) =

∫
d3k√

2ω(2π)3

∑
λ

→
ε (~k, λ)[a(k, λ)e−ikx + a†(k, λ)eikx] w = k0 = |−→k |

where
~ε(k, λ), λ = 1, 2 with ~k ·~ε(k, λ) = 0

The quantization condition is of the form,

[∂0Ai(
→
x, t), Aj(

→
x
′
, t)] = −iδtrijδtrij (x− x′)

Solve for a(k, λ) and a+(k, λ) and compute the commutator,

[a(k, λ), a†(k′, λ′)]

– – – – – – – – – – – – – – – – – – – – – –
Solution:

a(k, λ) = i

∫
d3x√

(2π)32ω
[eik·x

←→
∂0~ε(k, λ) · ~A(x)]

a†(k, λ) = −i
∫

d3x√
(2π)32ω

[e−ik·x
←→
∂0~ε(k, λ) · ~A(x)]

Commutation relations,

[a(k, λ), a†(k′, λ′)] =

∫
d3xd3x′eikxe−ik

′x′√
(2π)

3
2wk (2π)

3
2wk′

[
~ε(k, λ) · ∂0 ~A(x)− ik0~ε(k, λ) · ~A(x), ~ε(k′, λ′) · ∂0 ~A(x′) + ik′0~ε(k

′, λ′) · ~A(x′)
]

=

∫
d3xd3x′eikxe−ik

′x′√
(2π)

3
2wk (2π)

3
2wk′

{εi(k, λ)ik′0εj(k
′, λ′)[∂0Ai(x), Aj(x

′)]− ik0εi(k, λ)εj(k
′, λ′)[Ai(x), ∂0Aj(x

′)]}

=

∫
d3xd3x′eikxe−ik

′x′√
(2π)

3
2wk (2π)

3
2wk′

{εi(k, λ)εj(k
′, λ′) (−i) δtrij (x− x′) (ik′0 + ik0)}

Note that

l =

∫
d3xd3x′ei

→
k ·→x e−i

→
k′·→x ′εi(k, λ)εj(k

′, λ′)δtrij (x− x′) =

∫
d3xd3x′ei

→
k ·→x e−i

→
k′·→x ′εi(k, λ)εj(k

′, λ′)

∫
d3qei

→
q ·(→x−→x ′)(δij −

qiqj
q2

)

=

∫
d3xd3x′ei(

→
k−→q )·→x e−i(

→
k′−→q )·→x ′εi(k, λ)εj(k

′, λ′)

∫
d3q(δij −

qiqj
q2

) =

∫
d3qδ3(

→
k −→q )δ(

→
k′ −→q )εi(k, λ)εj(k

′, λ′)(δij −
qiqj
q2

)

= δ3(~k − ~k′)(δij −
kikj
k2

)εi(k, λ)εj(k
′, λ′) = δ3(~k − ~k′)[~ε(k, λ) ·~ε(k, λ′)− 1

k2
~ε(k, λ) ·

→
k

(
~ε(k, λ′) ·

→
k

)
]

= δλλ′δ
3(~k − ~k′)

where we have used
~ε(k, λ) ·~ε(k, λ′) = δλλ′ , ~ε(k, λ) ·

→
k = 0

5



Quantum Field Theory

Ling-Fong Li

January 4, 2015

Homework set 5, Solution
1. Consider the reaction

e+ (p′) + e− (p)→ µ+ (k′) + µ− (k)

(a) The spin averaged probability is of the form

1

4

∑
spin

∣∣M(e+e− → µ+µ−)
∣∣2 =

e4

q4
Tr
[(
/p′ −me

)
γµ ( /p+me) γ

ν
]
Tr
[(
/k′ +mµ

)
γµ ( /k +mµ) γν

]
Show that for energies � mµ, this can be written as

1

4

∑
spin′

∣∣M(e+e− → µ+µ−)
∣∣2 = 8

e4

q4

[
(p · k)

(
p′ · k

′
)

+ (p′ · k)
(
p · k

′
)]

(b) The phase space for this reaction is given by

ρ =

∫
(2π)4δ4(p+ p′ − k − k′) d3k

(2π)32ω

d3k′

(2π)32ω′

Show that

ρ =
dΩ

32π2

in the center of mass frame.
– – – – – – – – – – – – – – – – – – – –
Solution:
a)

Tr
[(
/p′ −me

)
γµ ( /p+me) γ

ν
]

= Tr
[
/p′γµ /pγν

]
−m2Tr [γµγν ]

= 4 [p′µpν − gµν (p · p′) + pµp′ν ]− 4m2
eg
µν

Tr
[(
/k′ +mµ

)
γµ ( /k −mµ) γν

]
= Tr

[
/k′γµ /kγ

ν
]
−m2

µTr
[
γµγ

ν
]

= 4 [k′µkν − gµν (k · k′) + kµk′ν ]− 4m2
µg
µν

1

4

∑
spin

∣∣M(e+e− → µ+µ−)
∣∣2 =

e4

q4
Tr
[(
/p′ −me

)
γµ ( /p+me) γ

ν
]
Tr
[(
/k′ +mµ

)
γµ ( /k +mµ) γν

]
= 8

e4

q4

[
(p · k)

(
p′ · k

′
)

+ (p′ · k)
(
p · k

′
)]

where me,mµ have been neglected.
b) In the center of mass frame, we write the momenta as

pµ = (E, 0, 0, E) , p′µ = (E, 0, 0,−E)

kµ =

(
E,
→
k

)
, k′µ =

(
E,−

→
k

)
, with

→
k · ẑ =

∣∣∣∣→k ∣∣∣∣ cos θ

Then the phase space is

ρ =

∫
(2π)4δ4(p+ p′ − k − k′) d3k

(2π)32ω

d3k′

(2π)32ω′

=
1

4π2

∫
δ (2E − ω − ω′) d3k

4ωω′
=

1

32π2

∫
δ (E − ω)

k2dkdΩ

ω2
=

dΩ

32π2

1



2. The Lagrangian for the free photon is of the form,

L = −1

4
FµνF

µν , where Fµν = ∂µAν − ∂νAµ

Suppose we add a mass term to this Lagrangian

L′ = −1

4
FµνF

µν +
1

2
µ2AµA

µ

(a) Find the equation of motion.

(b) From the equation of motion show that
∂µAµ = 0

and use the equation of motion to express A0 in terms of other field variables

(c) Carry out the quantization procedure and find the eigenvalues of the Hamiltonian.
– – – – – – – – – – – – – – – – – –
Solution :
a)

∂L
∂ (∂µAν)

= −Fµν , ∂L
∂Aν

= µ2Aν

Equation of motion
∂µF

µν + µ2Aν = 0

b) From equation of motion

∂ν∂µF
µν + µ2∂νA

ν = 0, =⇒ ∂νA
ν = 0

and
A0 = − 1

µ2
∂iF

i0

c) Conjugate momenta

πi =
∂L

∂ (∂0Ai)
= −F 0i, and A0 does not have conjugate momenta

Commutation relation,

[πi (x, t) , Aj (x′, t)] = −iδijδ3 (x− x′) , [Ai (x, t) , Aj (x′, t)] = 0, [πi (x, t) , πj (x′, t)] = 0

Note that we can write
A0 = − 1

µ2
∂iF

i0 =
1

µ2
∂iπ

i

and
[A0 (x, t) , Aj (x′, t)] = − 1

µ2
[∂iπ

i (x, t) , Aj (x′, t)] = −i 1

µ2
∂jδ

3 (x− x′)

Also
[A0 (x, t) , πj (x′, t)] = − 1

µ2
[∂iπ

i (x, t) , πj (x′, t)] = 0

From πi = −F 0i = −(∂0Ai − ∂iA0), we get ∂0Ai = ∂iA0 − πi = 1
µ2 ∂j∂iπ

j − πi, and

[A0 (x, t) , ∂0Ai (x′, t)] = [A0 (x, t) ,
1

µ2
∂j∂iπ

j (x′, t)− πi (x′, t)] = 0

Equation of motion
∂µF

µi + µ2Ai = 0, or (∂µ∂
µ + µ2)Ai = 0

Solutions are

→
A(~x, t) =

∫
d3k√

2ω(2π)3

∑
λ=1,2,3

→
ε (~k, λ)[a(k, λ)e−ikx + a†(k, λ)eikx], ω = k0 =

√
|−→k |2 + µ2

Suppose the wave vector is in the z−direction,

k = (k0, 0, 0, k)

2



We can choose the polarization vectors as

εµ(~k, 1) = (0, 1, 0, 0), εµ(~k, 2) = (0, 0, 1, 0), εµ(~k, 3) =
1

µ2
(k, 1, 0, k0)

with
ε(~k, λ) · ε(~k, λ′) = −δλλ′ , λ, λ′ = 1, 2, 3

Since A0 also satisfies the same Klein-Gordon equation, we can extend the expansion as

Aµ(~x, t) =

∫
d3k√

2ω(2π)3

∑
λ=1,2,3

εµ(~k, λ)[a(k, λ)e−ikx + a†(k, λ)eikx], ω = k0 =

√
|−→k |2 + µ2

Then

a(k, λ) = i

∫
d3x√

(2π)32ω
[eik·x

←→
∂0 ε(k, λ) ·A(x)]

a†(k, λ) = −i
∫

d3x√
(2π)32ω

[e−ik·x
←→
∂0 ε(k, λ) ·A(x)]

Commutation relations,

[a(k, λ), a†(k′, λ′)] =

∫
d3xd3x′eikxe−ik

′x′√
(2π)

3
2wk (2π)

3
2wk′

[
ε(k, λ) · ∂0A(x)− ik0ε(k, λ) ·A(x), ε(k′, λ′) · ∂0A(x′) + ik′0ε(k

′, λ′) ·A(x′)
]

=

∫
d3xd3x′eikxe−ik

′x′√
(2π)

3
2wk (2π)

3
2wk′

{εµ(k, λ)ik′0εν(k′, λ′)[∂0A
µ(x), Aν(x′)]− ik0εi(k, λ)εj(k

′, λ′)[Ai(x), ∂0Aj(x
′)]}

=

∫
d3xd3x′eikxe−ik

′x′√
(2π)

3
2wk (2π)

3
2wk′

{εi(k, λ)εj(k
′, λ′) (−i) δtrij (x− x′) (ik′0 + ik0)}

Note that

l =

∫
d3xd3x′ei

→
k ·→x e−i

→
k′·→x ′εi(k, λ)εj(k

′, λ′)δtrij (x− x′) =

∫
d3xd3x′ei

→
k ·→x e−i

→
k′·→x ′εi(k, λ)εj(k

′, λ′)

∫
d3qei

→
q ·(→x−→x ′)(δij −

qiqj
q2

)

=

∫
d3xd3x′ei(

→
k−→q )·→x e−i(

→
k′−→q )·→x ′εi(k, λ)εj(k

′, λ′)

∫
d3q(δij −

qiqj
q2

) =

∫
d3qδ3(

→
k −→q )δ(

→
k′ −→q )εi(k, λ)εj(k

′, λ′)(δij −
qiqj
q2

)

= δ3(~k − ~k′)(δij −
kikj
k2

)εi(k, λ)εj(k
′, λ′) = δ3(~k − ~k′)[~ε(k, λ) ·~ε(k, λ′)− 1

k2
~ε(k, λ) ·

→
k

(
~ε(k, λ′) ·

→
k

)
]

= δλλ′δ
3(~k − ~k′)

where we have used
~ε(k, λ) ·~ε(k, λ′) = δλλ′ , ~ε(k, λ) ·

→
k = 0

3. In the λφ4 theory the interacting Lagrangian is of the form,

Lint = − λ
4!
φ4

For the 2-body elastic scattering we need to compute to second order in λ the following vacuum expectation
value

τ (2) (y1, y2, x1, x2) =
(−i)2

2!

∫ ∞
−∞

d4z1d
4z2〈0|T

(
φin (y1)φin (y2)φin (x1)φin (x2)

(
λ

4!
φ4in (z1)

)
(
λ

4!
φ4in (z2))

)
|0〉

Use Wick’s theorem to write this matrix element in terms of propagators.

4. The Lagrangian for the free fermion field is of the form,

L =
_

ψ(iγµ∂µ −m)ψ

Compute the free propagator ∫
d4xeipx

〈
0
∣∣∣T (ψα (x)

_

ψβ (0)
)∣∣∣ 0〉

3



– – – – – – – – – – – – – –
Solution : The propagator is defined as,

Sαβ (p) =

∫
d4xeipx

〈
0
∣∣∣T (ψα (x)

_

ψβ (0)
)∣∣∣ 0〉

=

∫
d4xeipx

〈
0
∣∣∣(θ (x0)ψα (x)

_

ψβ (0)− θ (−x0)
_

ψβ (0)ψα (x)
)∣∣∣ 0〉

Note that there is a minus sign for the second term due to the fact that fermion fields anti-commute. Write
out the mode expansion,

ψα (x) =
∑
s

∫
d3p

(2π)
3
2

1√
2Ep

[
b (p, s)uα (p, s) e−ip·x + d† (p, s) υα (p, s) eip·x

]
_

ψβ (0) =
∑
s′

∫
d3p′

(2π)
3
2

1√
2Ep

[
b† (p′, s′)

_
uβ (p′, s′) + d (p′, s′)

_
υβ (p′, s′)

]
Then we get〈

0
∣∣∣ψα (x)

_

ψβ (0)
∣∣∣ 0〉 =

∑
s

∫
d3p

(2π)
3/2

1√
2Ep

∫
d3p′

(2π)
3
2

1√
2Ep

uα (p, s) e−ip·x
_
uβ (p′, s′)

〈
0
∣∣b (p, s) b† (p′, s′)

∣∣ 0〉
=

∑
s

∫
d3p′

(2π)
3

1

2Ep
uα (p′, s)

_
uβ (p′, s) e−ip

′·x =

∫
d3p′

(2π)
3

1

2Ep

(
/p′ +m

)
αβ
e−ip

′·x

where we have used ∑
s

uα (p, s)
_
uβ (p, s) = ( /p+m)αβ

Similarly,〈
0
∣∣∣_ψβ (0)ψα (x)

∣∣∣ 0〉 =
∑
s

∫
d3p′

(2π)
3

1

2Ep
vα (p′, s)

_
vβ (p′, s) eip

′·x =

∫
d3p′

(2π)
3

1

2Ep

(
/p′ −m

)
αβ
eip

′·x

and〈
0
∣∣∣(θ (x0)ψα (x)

_

ψβ (0) + θ (−x0)
_

ψβ (0)ψα (x)
)∣∣∣ 0〉 =

∫
d3p′

(2π)
3

1

2E′p
[θ (x0)

(
/p′ +m

)
αβ
e−ip

′·x−θ (−x0)
(
/p′ −m

)
αβ
eip

′·x], p′0 =
√
p2 +m2

where we have used ∑
s

vα (p, s)
_
vβ (p, s) = ( /p−m)αβ

Note that
1

2π

∫
dp0

p20 − E2p + iε
e−ip0t =

{
−i 1

2EP
e−iEpt for t > 0

−i 1
2EP

eiEP t for 0 > t

We then get∫
d4p

(2π)
4

eip·x

p2 −m2 + iε
( /p+m) = −i

∫
d3p

(2π)32Ep

[
θ (t) e−iEpte−i

→
p ·→x

(
Epγ0 −

→
γ ·→p +m

)
+ θ(−t)eiEpte−i

→
p ·→x

(
−Epγ0 −

→
γ ·→p +m

)]
= −i

∫
d3p

(2π)32Ep

[
θ (t) e−iEpte−i

→
p ·→x ( /p+m) + θ(−t)eiEptei

→
p ·→x (− /p+m)

]
= −i

∫
d3p

(2π)32Ep

[
θ (t) e−ipx ( /p+m) + θ(−t)e−ipx (− /p+m)

]
So the fermion propagator is of the form,

Sαβ (p) =

∫
d4xeipx

〈
0
∣∣∣T (ψα (x)

_

ψβ (0)
)∣∣∣ 0〉 =

∫
d4p

(2π)
4

eip·x

p2 −m2 + iε
( /p+m)αβ

4


	1 HW2014_sol.pdf
	HW2_sol_2014
	HW3_sol2014
	HW4_sol_2014
	HW5_sol_2014

