Quantum Field Theory
Chapter 1, Homework & Solution

1. Show that the combination
’p ith £ =1/ 74 m2
— wi = m
Yok p

which occurs frequently in phase space calculation integration is invariant under Lorentz transformation.

Solution: Under the Lorentz transformation in z-direction, we have the relations
. = (p- — BE)
E' =~ (E — Bp)

Then

dp’, = (dp- — BdE)

From energy momentum relation, we get

EdE = p.dp.
and i
dplz =7 (dpz - B%dpz) =7 gz (E - sz)

Hence

dp, _ dp:

E E
and

By Pp

2E'  2F
Alternatively, we can make use of the identity,

1 1

[ b (= 5"+ ) 0 ) = — e = 5

2 2F
2\ p +m?

— d4p5 (p2 _ mZ)

to write .
d3p

2F
which is clearly Lorentz invariant.

2. Consider a system where 2 particles interacting with eac other through potential energy V' (;1 — ;2) so that
the Lagrangian is of the form,

N 2 N 2
m1 dl‘l mo dl‘g — —
L= M2 (dT2) _ ( _ )
2<dt>+2<dt> Vi - o

(a) Show that this Lagrangian is invariant under the spatial translation given by

! !

g e g e d e
Tr1— T =21+ a, Tog — Xy = T2+ a,

— . .
where a is an arbitrary vector.

(b) Use Noether’s theorem to construct the conserved quantity corresponding to this symmetry.

Solution :
a) It is obvious that from
—/ — —/ —
dr, dwz; dry drs
a  dt’ d  dt

—/ —/ — —

xl_x2:x1_$2



that L is invariant under translation.
b) For infinitesmal translation

dt1=a, Jre=a
From Noether’s theorem, the conserved charge is

oL oL

Jia; = dx1; +
¢ 9 (Ooz1;) 1 9 (Ooxa;)

(5$2j = mlﬁgxlja]— + mg(?oxgjaj

Or
Ji = m10ox1; + ma20pxa;

This is the usual total momentum of this 2 particle system.

3. Compute the following physical quantities in the right units.
(a) The total cross section for ete™ — uTp~ at high energies is of the form,

dma®
Tem — ,u+/f) =35 s =4E?, FE :energy of e~ in cm frame, « fine structure constant

Compute the cross section for the energies £ = 100Gev, 7TTev

0'(6

(b) The formula for the p decay is given by

GQ MS
r (,u — eyD) = ﬁ, G g is the Fermi constant, M,, the proton mass
s

Compute the muon lifetime in seconds.

Solution :

a) E =100Gev

A’ 4% 3.14 1\°
o="% = . () = 0.557 x 10~ 5Gev >
3s 3 x 4 x (100Gev)” \ 137

Use he = 1.973 x 10~ "' Mev — cm we get

o(100Gev) = 0.557 x 10~°Gev™ x (1.973 x 10~ "' Mev — em)? = 3.89 x 10~*°cm?

per 100Gev\ 12
o (TTev) = o(100Gev) x < e ) = 3.89 x (70> = 8.4 x 107%%cm?
b) 2
Fp = evw) = ?3;5 - {1160 12;(55;};21)3(105]\4%)5 =29 x 10" Gev

Use i = 6.58 x 10~22Mev — sec

I'=2.9x 107 Gev x (6.58 x 1022 Mev — sec) " = 4.4 x 10° sec™"

1/T =22 x107° sec

4. Construct the Lorentz transformation for motion of coordinate axis in arbitrary direction by using the fact that
coordinates perpendicualr to the direction of motion remain unchanged.

Solution :
Let v be the velocity of the coordinate system x. We can decompose x as

— — — . — — AN A — — — —
r=x,+zx, with x| = (z - 9)0, ry = -z =2 —(
. . —
Under the Lorentz transformation with v, we have

) =7 (2 —vo), zo = (0 — vay), T, =1,



Or

—! —

(¢ -0)=9l(z - 0) —vzo],  ah=qlwo—v(z-0)], T =z
These can be written as
—/ —/ —/ —/ —! — — —
r = z,+x;=(r 0o+, =[x 9)—vreld+ 2 —(z-9)0

. Electric and magnetic fields, F, B, combine into an antisymmetric second rank tensor unde the Lorentz trans-
formtion,

FM = gAY — 9V A*  with F% = 9°A' — 9'A° = —F!, FU=9'A7 — 9T A" = —€i51 B
These Minkowski tensors have the following property under the Lorentz transformation,
FH — F'PY =AM AgFo‘B , A% matrix element of Lorentz transformation

Suppose an inertial frame O’ moves with respect to O with velocity v in the positive z-direction.

(a) Find the relations between the electric and magnetic fields, F’, B’,in the O’ and those in the O frame.

(b) Show that the combination E - B, does not change from O to O’ frames.

—2 —2

(c¢) Show that the combination E — B , does not change either.

Solution:
a) For convenience write the Lorentz transformation as

vy =By 00
By vy 00 ; !
v _
Ab = 0 0 10 with ~ = — 52
0 0 0 1

Then we get the transformation relation
EY = F''0 = ALAJF10 4 AJASFO = (42 — 29%)E* = B!
F2 — 20 _ AZAJF?0 4 AZAOF?! = (vE? — By (_B3)) =~E? + ByB?
E3/ _ F'30 — AgAgFSO +A§A(1)F31 — (,YEB _ 5732) — ,YE3 _ ,8'}/32
BY = F'® = A3AJF® = B!
BY = F'3 = ASAL P! 4 ABALF30 = (vB? — ByE?)
BY = F'12 = AJAJF™? 4 AJABF™? = (187 — fy(~ E%)) = 1B + B E?

b)
B-E = E'B'+(yE>+ByB%) (B2 — ByE®) + (VE° — yB2) (vB® + By E?)
— E'B'4E’B?+ F°B*=B E
c)
E —B = (B + (B 4 5yB) 4 (1EP — ByB%)” — (B') — (1B? — ByE?)’ — (vB + ByE?)’

(B () () - (8 - () - () = F - B



Quantum Field Theory
Homework set 2, Solution

1. The Dirac Hamiltonian for free particle is given by

H=a-p+p8m

The angular momentum operator is of the form,

(a)

L=7xp
Compute the commutators,
2
Is Z conserved?
Define g = fi (8 X EZ) and show that
[f 4 S, H] —0

Show that 5 satisfy the angular momentum algebra, i.e.
[Si, S;] = i€k Sk

and

-2

3
S—Z.

Solution :

a)

(L1, a- E + Bm] = [waps — x3p2, Qap2 + asps] = —iaops — (—iazpz) = —i (a X E)

We can generalize this to

—  —

[Z, E-E—i—ﬂm} :—i(a X p)
So f is not conserved.
b)
i —_  —
[S1, H] = —3 {azaa, a-p +5m}

It is easy to verify that
[azas, 1] = asazar — arazaz =0,

[z, o] = azazan — asapas = —2as,
Similarly,
(203, 3] = 200, [oaus, ] = 0
Then )
(3 — —
[S1, H] = 2 (—04 x p>1
Or ~
[S,H]=ia x p
So

i.e. the total angular momenta is conserved.

¢)

N2
—1 1
[S1,52] = (2 ) [asas, agai] = ~1 (arazazon — azaiopasz) =

1
- =S
2&1&2 103

1



—i\? 1
S% = <2> Qo303 — 1
Then 2 )
2. The Dirac spinors are of the form,
1 E.E
u(p,s) =VE+m c-p Xs» v(p,s)=VE+m| Exrm |Xs s=1,2
E+m 1
where
1 0
X1 = 0 ) X2 = 1
(a) Show that
w(p,s)u(p,s') =2mdsy, v (p,s)v(p,s) = —2mdse
v (p,s)u(p,s') =0, u(p,s)v(p,s’) =0
UT (7]7, S) U (p’ Sl) = Oﬂ U‘T (pa 5) v (7]), S/) =0
(b) Show that
Zu’a (p75) Ia/j’ (p75) = (#4— m)aﬁ
Z'Ua (p,s) vg (p,s) = (- m)aﬁ
Solution :
a)
—  — 1
wues) = Ermnd (1 222 ) (5 |
tm EF+m
2
p
= (E+m)X]; 1- Xs:2méss’
(E+m)?
i 7 o p
voos) = Ermd( ZE ) T |
E+m 1
2
p
= (E4+m)x! —1|x, = —2mb.y
( )X <(E+m)2 >x s
(23
u(p,s)v(p,s’):(E+m)xl(1 p) E+m |Xs=0
E+m 1
—  — ]-
o) us) = et (22 )| g5 |0
E+m
E+m
_—_ —> 1
o us) = Ermnd (22 ) (g =
tm E+m
7 p
d poyons) = Ermnd (1 Z2 ) [ Tp =0
E+m 1



b)The spin sum for u—spinors,

> ta(p.s)us (ps) = (E+m< 5.5 >szxg( —Eii%)(Eer)(;ﬁ =3

E+m E+m  (E+m)?

E+m —d-p

where we have used

Similarly for the v—spinor,

G5 . p _ &7
> va(ps) Vs (ps) = w+mwfﬂm)%ﬁ(;@ - )(E+m<(%?2 F
s E+m -

- E—-m —0-p ——m
o g-p —(E+m) )

3. Suppose a free Dirac particle at t=0, is described by a wavefunction,

= 1 2
P (0, x) = Wexp (—;d2> w

where d is some constant and

OO =

o

Compute the wavefunction for ¢ # 0. What happens when d is very small?

Solution :
Expand 9 (0, ac) in terms of spinors

3
x) —g/@i)ﬁ [b(p,s)u(p,

We can compute the expansion coefficients by the orthogonality properties

$)eTT 4 (p,s) v (p,s) e 7]

—s

s):/d?’xe ; (s (E O)Z/d?’xe ip s 1 exp<—7n2>

The Fourier transform of the Gaussian wave packet can be calculated as follows,

2 —2
3. —ip- T T _ 3 L= = a0 p d?
/d xe P ¥ exp <2d2> = /d xexp[fﬁ(x +ipd®)® — 5 ]
—2 ) 1 —2 2
= exp(— )/d?’xexp[—ﬁ(;)Q] = exp( )(V27d)
where we have used
/dme T =r
2
2. 1 1
=/ E, + mdgs exp P )

Similarly

dBre—irT - dge=i?P T 1 r?
= o B0 < ()



UT(p,s)w—\/E—mel( g-p 1)

E+m S\ Pz t+ipy

OO O

and

2
2.1 1 1
T - ./E _r 1 bz
4 (p.2) pmep(=75) (Pm+ipy)E+m

J2E, T

For non-zero ¢t we get

v (7)) =3 / b5 u(pys) e BT 4l ()0 (p, 5) €t T
3
L (2m)* 2E,
Note that
p

NE—I—m

b(p,s)
This shows that the negative energy amplitude becomes appreciable when p ~ m.

‘ d' (p, s)

. Consider a 2 x 2 hermitian matrix defined by
X =x0+ oz
where o = (01,02,03) are Pauli matrices and ( zg, E’) are space-time coordinates.
(a) Compute the determinant of X
(b) Suppose U is a 2 x 2 matrix with det U = 1. Define a new 2 x 2 matrix by a similarity transformation,
X' =UxU"

Show that X’ can be written as
X' =z(+o0-x
.

(c¢) Show that the relation between (xo, ?) and (x{), T ) is a Lorentz transformation.

(d) Suppose U is of the form,

— —!
Find the relation between (xo, x) and (x{), T ) .

Solution:
a)

X — To+x3 X1 —1x9
T +1try To— T3

det X = a3 — 2] — 23 — 23
b) Note that X is Hermitian,
xt= (xo+E-E)T:xO+;~§
So is X’
x't = wxvh =vxtvt =vxvt = x’
Expand X’ in terms of complete set of 2 x 2 Hermitian matrices,

— =/
X' =z(+o0-x

¢)From the invariance of the determinant
det X’ = det(UXU') = det U (det X) det UT = det X

we see that

i — a3 —a5 — w3 =af — 2 — o —af



.

So the relation between (xo, 5) and (x(), T ) is a Lorentz transformation.

d)
y_ et O. To+ T3 X1 — 1x2 e le O
Xy _< 0 e“‘)(ml—f—ixg To — I3 )( 0 e«
< (zo + x3) e (x — ixy) )
e2(—ia) (z1 + izg) (zo — x3)

X/

This correspond to a rotation z — axis.
Note that U is not necessarily unitary. In fact the Lorentz boost correspond to

which gives

o e* 0 To+ T3 X1 —1ixo e* 0
UXut = ( 0 e @ ) ( 1 +1ire T — T3 ) ( 0 e @
_ ( e2% (xg + x3) (z1 — ix2) )

(z1 + ix2) e 2% (zg — x3)

This implies
2o = cosh 2 xg + sinh 2a 23

:rlg = sinh 2a z¢ + cosh 2 «

0
For the Lorentz boost along x—axis, we can first rotate 5 about y-axis using

cosé fsiné 1 —1 T
2

sin Ccos —
2

hen

1 1 To+x3 X1 — 11X 1 -1 . To+x1 —1To — X3
-1 1 T, +1ry o — T3 1 1 o 1To — X3 To — T1

s (0 )(mrn cmew (@ o
0 e 1Ty — T3 To — T 0 e
e (zo+x1) — (ize + x3)
o — (w3 —ize) e 2%(xg— 1)

X = vjeaxu =g (1 ) (Slmm Sme (1)

—(x3 —izg) e ZTo — X1)

and

X3

1 1 1 1
T3+ —e 2% (g —x1) + =€** (o + 1) =€ (zo + 1) — 56_20‘ (xo — x1) — ix2

) 1
iTg — 56’20‘ (xo —x1) + 5626‘ (zo + 1) 56’20‘ (xo —x1) —x3 + §e2a (zo + 1)

1 1
Ty = 56_2“ (xo — 1) + 562“ (xo + x1) = cosh 2ax + sinh 2ca;

/ !/
.’E3:£L'3, 1’2:.’E2

1 1
Ty = 75672(1 (xo —x1) + 5626“ (zo + x1) = sinh 2z + cosh 2aa4



5. Dirac particle in the presence of electromagnetic field satisfies the equation,

hﬂu (ia/l, - EA/L) - m] Q,Z} (33) =0

ia—w: {a <E—ez>+ﬁm+e¢}w

ot
In the non-relativistic limit, we can write
b () = e ( ! )
Show that the upper component satisfies the equation,
8“ 1 — - 2 e -
) l(peA) ——o0-B+egp
2m

Zai 2m Y

— — 1— N
For the case of weak uniform magnetic field B we can take A = §B X r. Show that

Ou 1 /—\2 e (= =2\ =

Solution:
In non-relativistic limit, Dirac equation becomes
i— + mu m+ e¢ o-|p—¢€eA
e ()
Tl l — . — - - -
Zater o (p eA) m+ ep
Or 5
za—? = (ep)u+ o - <56A>l
i3 =0 p—eA|u+(—2m+ep)l

From the 2nd equation, we get

ol
where we have neglected e¢ and —.Substitute this into first equation we get

ot

Using the identity

we get

Since p and ez we get
(551) X <561_4> —e<ZXE+BXZ)—+ie§XZ—i6§

Then the equation becomes




For weak field, we get

2 . o -
(5—6A> = P2—€<5'A+A'5)=P2—e<—iv-;r><B>

and o ) )
ou . e — — —
i [zm (%) -5, <L“‘5) 'B} u-

6. a];, a;, a1, az are creation and annihilation operators satifying the commutation relations
|:aiaa}j| :6Lja [a’iaaj] 207 Za.] = 152

Define
101 — G042

N —

Jy=alay, J_=J)", U=

(a) Compute the commutators
oy Jyls [Ty, 2], (U2 Tl

1
where J, = 3 (Jy+J2), Jy =
(b) Define the state |0) by

1
5 e = J-)

a; |0) =0, for 1 =1,2
Let the state |nq,na) be

mm) = = (af) " (a1) " 10)

Show that this state is an eigenstate of J3 and compute the eigenvalue.
(c) Show that this is also eigen state of J? = JZ + J2 + J2 and compute the eigenvalue.

(d) Show that the state J4 |n1,ng) is an eigenstate of J3. What is the eigenvalue?
a)

1 1
[y, J3] = 3 [aJ{ag, (a];al - agag)} =3 (—2&1(12) =—J;
Similarly
[J_,J5] = J_
Also
[Jy,J ] = [alag, aba)] = (a{al - CL;CLQ) =2J3
Then 1 ) 1
[J1, J3] = 3 [Jy +J_, J5] = 3 (=Js+J)= 3 (=2iJy) = —iJy
and ) )
[J2, J5] = % [y = J-, 3] = 5 ("I —J-) =5 (=20 =i
The other commutator is
1 1 .
[Jl, JQ] = 1 [J+ +J_,Js — J_] = @(—2 X 2J3) =1J3
Define the number operators
Ny = a?[al, Ny = a%ag
Then we can derive
o] = o] =t 3 )] = (o)

and



From this we see that

1 ni n2
N1 |TL1,712> = le ((ZI) (a%) |O> =N |n1,n2>
where we have used
Ny |0)=0
Similarly,
Ny |ni,ng) = ng [ni, na)
Then

Jz|n1,m2) = (N1 — Na) [ng,n2) = (n1 — na2) |n1,na)
2

We can write J as

2

1
J =3 [(Jod_ +J_Jy]+J3
We can write J,, J_ in term of number operators as

JiJ_ = a1a2a£a1 = a];(l + a%ag)al = N1 (14 No)

and
J+J_ = NQ (1 + Nl)
So
-2 1 5 1 1 9
J = 5 [(Jrd_ +J_Ji]++J5 = 5[(N1 + Na) + 2N No] + 1 (N7 — No)
1
= Z(N1+N2)(N1+N2+2)
and
—2 1
J |n17n2> = Z (711 + 1’L2) ((n1 + no + 2)) |n17n2>

This implies that

1

J = — (n1 + n2)

2

d) From
[J+v J3] =—J4
we see that
J3(Jy In1,n2)) = (n1 —nz + 1) (J4 [n1,m2))
Furthermore
¥ 1 $ ni+1 n no
J4 |n1,m2) = ajag |ny, ng) = o (a1> as (a2) |0)
Use )
na ng —
[a’Qv (a;) ] =n2 (CL;)
we get
J ! N () o 1 1 1
sz = e (al) e (ad) 10 = V1) Gz L = )
From 1
J:§(n1+n2), mzi(nl—ng)
we see that
ny=J+m, ng=J—m

and

Jilni,ng) =/ (J+m+1)(J —m)|ng +1,np — 1)



Quantum Field Theory
Homework 3 solution

1. The Dirac equation for free particle is given by,
(78, — m) v (2) = 0
Under the parity transformation the space-time coordiante transform as
ot — 2 = (xg, —x1, —T2, —13)
The Dirac equation in the new coordinate system is of the form,
(in"0), —m) ¢’ (2') =0

Find the relation between 1 (z) and ¢’ (z').

Solution: For the parity transformation, the Lorentz transformation is of the form,

Then from
—1 AUV
S ’Ylu.S - AMF)/I/

we see that
571%5 =Yy, Sil'yiS = —,; 1=1,2,3
Clearly,
S =y, and Y (xl) =¥ (z)

It is easy to see that
_/ _ _/ _ _/ _ _/ — _/ —
7/) 1/)/ = 1/”»0’ 7/] ’7511[)/ = *w%ﬂ/% 1/} ’Ylﬂl/ = IZ”YM/% d) 7#751/}/ = 7%[}’7#’751;[}7 Q;Z) O'/J,V/l/}/ = 7/)C’lwwy
2. The left-handed and right-handed components of a Dirac particle are defined by,

(1 —15), ¢RE%(1+75)¢

where 5 is defined by

15 =" ="y

(a) Show that
{75:7,} =0, and =1

—
=

Show that ¢, ¢y are eigenstates of 75 matrix. What are the eigenvalues?

—
o
~

Are they eigenstates of parity operator?

1
u(p,8)=N< 77 )xs

E+4+m

(d) Write the u spinor in the form,

where N is some normalization constant and x, is an arbitrary 2 component spinor.
Show that if we choose x, to be eigenstate of c-p,

— ~ 1
(79 = b

then u (p, s) is an eigenstate of the helicity operator A = S - p where S is the spin operator given by

- 1({ 5 0
5:7 —

—_



Solution:

a)
{75:7°} = i{7"v'*7%,7° = i 0 + 00 PP) = (PR 4R R) = 0

%= 20" () = - (2) (1) (') = (5) (0P9°)

(=) ()P = - (*) =1

b)
1 1
Ys¥r =53 (I—7vs5)v = 5(75 -1 =—¢,
Similarly
Ys¥r = VR
¢) Under the parity we have
Py =1

Then
P =y =Yg, Pp=v%r =171

d) In the standard representation

Thus
_ 1

() (a2

3. Consider a one-dimensional string with length L which satisfies the wave equaiton,

¢ _ 1%
dx2 2 Ot2

(a) Find the solutions of this wave equation with the boundary conditions,
¢ (0,t)=¢(L,t)=0

(b) Find the Lagrangian density which will give this wave equation as the equation of motion.

(¢) From the Lagrangian density find the conjugate momenta and impose the quantization conditions. Also
find the Hamiltonian.

(d) Find the eigenvalues of the Hamiltonian.

Solution :
a)Write ¢ (x,t) = 1 (x) e"*F*. Then
821/) E2
0z2 02
Plane wave solution ¢ = e***, gives
E? — 212

Or
FE=+tuw, w = kv

For the boundary condition 1(0) = (L) = 0,we take

2 nwx

Y, () = 7 sin I



so that

Note that the energy eigenvalues are

b)The Lagrangian density is

Euler-Lagrange Eq

¢)Conjugate mometua

Hamiltonian

Commutation relations

d) Mode expansion

2 .
¢ (z,t) = Z VT |:a/n sin ?e_w"t + af sin L

O (,t) = Z \/E(—iwn) {

19%
v2 Ot?

/L/J (z)dzx = 6pm
E, = tw,, wn:%
= 26,07 - (0,07
—5( ) —7( )
oc oc Po
Y5 Yaee " T @R
oL
ﬂ-(x’t): 8(8t¢) 7(825(;5)
2
H=mp— L= (00 + 5 (0.6)
[(b (l‘,t), 8t¢ (yvt)] =10 (.73 - y)

. nrT o,
ay, sin —— e~ wnt

L

—alsi
a,, sin

nwT eiwnt} 1
L 2p

L
2 .
an = \/;('din ; dz [(—iwp) ¢ (x,t) + 0r¢ (x, )] 4/ I sin %e“"”t
Then
L
2 .
[an, a;rn] = m/{) dzdy <L> sin L g=iwnt i Ly glwmt
[(_iwn) ¢ (;C, t) + at¢ (xv t) ’ (iwm) ¢ (yv t) + at¢ (yv t)]
Or
2 ) )
[an,ajﬂ] = m/o dz (L) sin Tﬁ—xe_““"t sin ?e“"mt (Wi + W)
= 6nm
Hamiltonian is
H= [ e[} 007+ Y @07
The first term is
L
1 2 . ) .
/0 dzg (%0)” = nsz( wn) (W) \/—m/ da sin 2% gin 1L [ane™ ™t —al e™n'] x [ame™ ™t —
1 1 , .
= 5 (—wn) 3 [anane™ 2t 4+ alal et —q,al — alan]
n
and the second term is
v? /L dot (0.0)° = Z 2 (@) (mﬂ) d:ccos m cosm [ane™ ™t +ale™n'] x [ame™™
0o 2" - L\L V2w, \/me L " " "

[anane*%‘”" JraJr T eXwnt 4 o aJr +aTan]



The Hamiltonian is then

H= /d:z:[ (8,0)° + — ] an anal, + alay)

4. Consider the Lagrangian density given by
L= % PO P — %,uQ(bQ + J(2) ¢, J (z) arbitray function
(a) Show that the equation of motion is of the form,
(00, + p*) ¢ () = J (2)

(b) Find the conjugate momenta and impose the quantization conditions.
(¢) Find the creation and annihilation operators.

Solution:
a) Equation of motion

Vg = = Photse=To
b)
Conjugate momentum
o oL — o
9(@09)
Quantization
[(b (:Cﬂf) ) T (yat)] =5’ (CE - y)
Define
("0 + 1*) Az —y) = 6" (z —y)
Then

6(@) =60 @) + [ Ao =) () d'y = 00 (@) + 0 (2)
where ¢, (z) satisfies the homogeneous equaiton

(3“(9” + ’uz) ¢o (x) =0

x>=/A<x—y>J<y>d4y

So ¢, (z) can be expanded in terms of plane waves

- [ =l
VJem)? 2,
Then we can solve for a (p) to write
alp) = /\/ﬁ{ wmao% }
- /W{a (6@~ [a@-nsmay)}

Note that the last term is a c-number and will not effect the commutation relation.
We can write the action as

S = /d4x£ /d4 [ 82+u)¢+J¢}
_ /d% 5 (o + 6a) (2% + 1) (¢0+¢01>+J(¢0+¢d)]

and

Je "+ al (p) ]

= [ dta| =G0 (0 + 1) 6y — 60 (0 + %) b = T) = 30 (0 + 1) G + b

[ | ~500 @+ 1) 60 - 30 0+ 1) 6+ JM



Note that
(82 + /’1'2) ¢cl =J
We get

1
S = /d433 {2% (0% + 1®) dg + Ty
5. Let ¢ be a free scalar field satisfying the field equation,
(0"0 + 1?) & () = 0
(a) Show that the propagator defined by
Ap(z—y) = (0T (¢ () ¢ (¥))]0) = 0 (z0 — y0) ¢ (2) & (y) + 0 (Yo — z0) ¢ (y) ¢ (2)
can be written as . .

A oy [ &R ik Y

F@=y) / 2n) k2 — p2 +ie

(b) Show that the unequal time commutator for these free fields is given by

3
iAo -) = (6,0 )] = [ (2733‘; T

(c¢) Show that A (x —y) = 0 for space-like separation, i.e.
Alz—y)=0, if (z—y)><0

Solution:

a)
ir(z,y) = (O[T (¢(z)¢(y))]0)
= 0(z0—y0) (0] (x) ¢ ()] 0) + 0 (yo — w0) (09 (y) ¢ ()] 0)
d3kd3k'

Using the mode expansion, we see that
0 0) = —_— 0
0@ w0 = [ G )

_ kK 53 (k‘ . k/) e—z’kx—i—ik’y _ d*k e~ ik(z—y)
(27)3 2wy, (2m)3 2wy,

<0 ‘[a(k)e‘ik”’]a+(k’)eik/y

_ 3k ik(a— ik(z—
i e.9) = [ g (00— ) 40 (g ) o)

27r)32wk
Note that .
i/ _ dko e—iko(o—va") _ —ige W (o—yo) for x> yo
o7 k% — W2 +ie - _iiei“’(mo_yo) for xp < Yo
We then get
dk e*ilv(a:/fy) B3k ) , ) ,
_ _ Y e~ —ik(x—z") ot — ik(z—x ):|
/ (%)4 k? + ie Z/ (27)32wy, [ ( Je +0( Je
= A (z,y)

b) From part a) we see immediately that

A=) =@ o) = [ (d’“ [erib o) _ ikt

21)° 2wy,

¢) For space like separation (z — y)2 < 0, we can chose a frame such that z —y has only spatial component
T—y= (O,E —5) .Then

6@).00) - | (d’“ [T*) . ei?-(”)] 0

27‘&')3 2wk

where we have change the integration variable k to —k in the second term.



Quantum Field Theory

Ling-Fong Li
December 5, 2014

Homework set 4, Solution

1. Dirac equation for electron moving in the electromagnetic field can be obtained from the free Dirac equation
by the replacement i0,, — 10, — eA,,

o (i — eAy) = m] o (2,1) =0

Then the equation for the positron is

Assume that 1, is related to ¥ by

C is called the charge conjugation matrix.

(a) Find C in terms of Dirac v matrices.

(b) For the v—spinor of the form,

o p
v(p,S)—N< o )xs

Compute its charge conjugate v, (p, s) = Cv* (p, 5)

(¢) To implement the charge conjugation for the fermion field, we write
e = CYC~t = Oy’

where C'is the charge conjugation operator. Find the relation between v, v#1, and 1y* 4.
Solution:
a) Dirac equation for a charged particle in em field is of the form,

[V (10 — eAp) —m]ip =0
On the other hand the equation for positron is
V" (10, +€eAy) —m], =0
Take the complex conjugate of Dirac equation we get
[— ()" (10, + eAy) —m] ¢ =0

If we assume 1, is related to ™ by
Y= Cy"
then _ _
C—l,}/,u.c — _’Yﬂ*

In the standard notation where vy, v;,v5 are real and v, ¢s imaginary, C can be taken as

~ . 0 —io
C:m/2:<i02 02>

which has the properties,



b) From the v — spinor of the form,

’U(p,S)ZN E+m Xsa S:i
1

we get
(—;* z —109
~  * O 7’L'O' ) % ok
ve(p,s) = Cv (1%9):(2-02 2>N E+m |Xs=N| , (o P Xs
1 E+m
1 1
= N ; : 5 (_iJQXs) = N ; : 5 (S) st = (8) U (pa —8)
E+m EF+m
where we have used the relations
02;*02 = —g, _iUQXS = (S) st

Note that the spin component is flipped under charge conjugation.
In terms of creation and annihilation operators, we have

0= [ i utrs
s ) \/(21)° 2E,

and the charge conjugate field is

)~ d (p,s) v (p, )]

~ T d3p ~ _— ~ v
v, = C wT = —— bt (p,s) Cu™ (p,s)eP* +d(p,s) Cv* (p,s)e”"P*
( ) g/\/(2w)32EP { }
= Z / d?)ip [bT (p, S) v (pa 7‘9) eip~:v +d (p, S) u (pa 75) e*ipa:]
s /(1) 2E,
Write
Y, =CypC~*
then
Cbh(p,s)C~' =d(p,—s), cd' (p, s)C~ ! = Al (p, —s)
¢) From N
Y, =Cy~
we get
Pl=¢TCl,  and . =T Cly, (1)
Then

berpe = BT Chy Gyt = 4Ty (~ClyC) o = v (7#)" 9"
T oy x] T Tt Dyt
- [w Yo (7*) 1/)} =" (v") v =~y
where we have used the property that fermion fields anti-commute. This means the 4-vector current for
the anti particles is negative of that for the particle. In other words, the 4-vector current is odd under

charge conjugation.
Similarly for the scalar current we have

oo = ¥TCTCy" = Ty (~C1C) 0" = —4Tygy”
T * T T -
= — [¥T¥] = vtrew =dv
and for the psudoscalar current
1_/JC'Y5¢C = ¢TC~’T70755¢* = ¢T70’75 (5T5) Y= 1/)T70’Y5¢*

T _
= [7/)T7075¢*] = —wT’YffY(ﬂ/’ = Y59



This shows that the scalar current is even under charge conjugation.

v s = UJT@T’YO’YH%CE/’* = ZZ’T’YO (*éT'Y#%é) Y= *1/’T’Yo (") 59"
= - [lﬁT’Yo (") 757/’*] ' = 1/JT’Y5 (’Y”)T Yo = 17”7”751/)

2. Consider a free scalar field ¢ () where the 4-momentum operator is of the form,

PH = /d3k k*a® (k) a (k)

(a) As a useful tool, show that for two operators A and B, the following identity holds

BABeiA =B+ [A,B] + % [A, [A, B” + % [Av [Av [Aa Bm +oee

(b) Use this identity to show that 4 , 4
esza (k‘) e—zP~m — (k‘) e—’Lk'.t

and

[P, ¢ (x)] =i0"¢ (x)
(c) Let |K) be an eigenstate of P, satisfying P* |K) = K* |K) . Show that

(K| (2) o (y)| K) = (K¢ (z —y) ¢ (0)| K)

Solution :
a) consider the function F'()) defined as

F(\) =eMBe ™M

Then - 2P

AA —A\A AA —)\A

dr = e "[A, Ble ) W = e "[A,[A, Blle y U
On the other hand, Taylor expansion of F'(\),gives
dF N d?F
F =F — = | ...

(A) (0)+/\d)\|xfo+ S Ia=0 +

Setting A = 1, we get
Ap —A 1 1
e Be :B+[A,B]+§[A,[A,B”+§[A,[A,[A,B}H#‘

b) From the identity in a) we get
e a(k) e = a (k) +iz" [Py a (k)] + %x”x"[Pm [P a (F)]] + -
Now we calculate the commutators,
[Pu,a (k)] = /dgk' Erlat (K)a (k) ,a (k)] =k a (k)

and
[Pl/a [P;m a (k)]] = k'k"a (k)
Then )
e %a(k)e " =a (k) [1 +ikw o+ (ik-2)° + - | = e*7a (k)

Take Hermitian conjugate we get

eiPmaT (k) efiP-m — efik-zajr (,ZC)



From the formula for P, and

we get

[P*, ¢ ()] =

—ipx +CLT (p) eipm]

= 7d3p a e
¢m»—/\ﬁ%mhf[<m

Ja (k') a(p)e” ™" +a (p) ]

/ d3p /dSk/ k/u[af (k/
1/ 2wy (27)?
/ \/L3 [@n Ko
2w, (27)
d3p ”w —ipxT T IPpT] _ o
/\/mp la(p)e —a' (p)e?’] =i0"¢

Sl () €715 (p — )

From this we can show that

¢) Write

Then

(K| (x) 6 (y)| K)

e (x) e = ¢ (2) +ia" [Py, ¢ (2)] + - = ¢ (¢ — a)

Bly) = e 706 (0)

= (K|¢o(2) e~V (0) eiP'y| K)=(K |efiP'yeiP'y¢(z) efip'y¢(0)| K) K
e UK ¢ (@ —y) ¢ (0)| K) ™Y = (K |¢ (z — ) ¢ (0)| K)

3. The propagator for a massless scalar field can be written in the form,

d4£L' eik»w

Ar () :/WM

Carrying out the integration to show that

Solution:

4 ik-x 3. — —ikozo
AF(z):/ dx4 et :/ dk:4ezk_1/ dkoe 2
(2m)" k2 + e (2m) %

k2 —k +ic
The ko integration can be performed by the standard contour method,
dkge~ koo —iT —ilk |k
[ = e 1 w0 a1
ki —k +ic 'k
We then have ) -
Ap (z) = R /0 dk (™ — e7™*7) [0 (z0) e "0 + 0 (—x0) €70
Using the identity
/ eizaTdT — / eil((xizE)TdT —
0 0 i(atig)
we get
1 1 1 1 1
A — 0 0(—
F (@) { (o) (r—mo—l—is * T+ T —ie) +6(=2o) (r—i—xo—i—ia * r—xo—zé)}

8m2r

—1

472

E

Oer) . O(-a) }:i 1

2., 2_ 2 _ 2 (22 _ 4
—xf +iexy T2 — 2§ —iexo 472 (22 — ie)



4. In thequantization of free electromagnetic fields the mode expansion is of the form,

—ikx ikx _ _H
[a(k, e~ ™ + at (k, \)e*®]  w=ko=|k|

/WZ

where .
ek, \),A=1,2 withk-€(k,A\)=0

The quantization condition is of the form,

DoAi(T,t), A; ;/,t = —i0U6 (x — 2!
j

37

Solve for a(k, A) and a™ (k, \) and compute the commutator,

[a(k, 2), a' (K", \)]

Solution: | B . )
a(k,\) = z/ W[e Op€(k, A) - A(x)]
e~ By e, A) - Al(a)]

. d3x
al(k,\) = —z/\/m

Commutation relations,

)7 2wy, (27) ka/

(a(k, ), a / \/d%d%/em T etk ) BoA(e) — ik, N) - (), 2 N) - BoA(a’) + ikLEK N

d3xd3 / zka: 71k' !
/ \/ {51(k,A)zkéq(k',A’)[@oAl(m), AJ(J?,)] — ikoé‘i(k‘,A)&j(k/,/\/)[Ai(Jf), ¢

ka 271' 2wk./

d3 d3 1 ikx —ik'z’
/ rere {ea(ks Ny (] N) (—i) 617 (z — ) (ik) + iko)}
\/ ka 2’/T ka/

Note that

I = /d3$d3 /zk z 71k a: (kJ,A)é‘j(kl )6tr 33—.73 /d3$d3 /zk z 7zk m (]{1 /\)6] k/ /d3q€ ;72

’

)((

_ /d?’iﬂd?’ ( 3) ;e_i(k/_z).;/gi(]@)\)Ej(kl7)\/)/dsq(aij _ q;gj) :/d3q53( E)&(k‘ _ q)f‘:z(k )\){‘:J(]f, )\/)

= 83 (k—k) 6y — %)ei(k, Ne; (K, N) = 8 (k — K[k, A) - €(k, X') — ﬁe(k A) - <€(k, N - Z)]

Il
==
>
>
S,
w
—_
Eaall
I
S
\—:

where we have used

ek N) &k N) = 6an, kA -k =0



Quantum Field Theory

Ling-Fong Li
January 4, 2015

Homework set 5, Solution
1. Consider the reaction
T +e (p) - pt (K) +p (k)

(a) The spin averaged probability is of the form

i > |M(eter — ptp )P = ZiTr [ = me) v (F+me) v Tr [(H +mu) v, (F+mu) "]

spin
Show that for energies > m,,, this can be written as

i 3 [ M(ete — ptur)P = 821 (k) (k) + ) (p-K)]

spin’

(b) The phase space for this reaction is given by

>k A3k
— 9 4 ¢4 o k— k/
r /( o ptp )(277)32w (2m)32w’
Show that
_dQ
P= 3002
in the center of mass frame.
Solution:
a)
Tr[(f —me) 2" (f+me)y’] = Tr [y )] —m*Tr "]
= Aprp" —g" (p D) +p"p"] — 4mig"”
Tr (K +mu) v, K—mu)v"] = Tr[{v,8"] —miTr[v,7"]

= 4[K"E — g™ (k- K') + E'EY] — 4m? g

64 p
—Tr [(f —me) v @+ me) ] Tr [(F +mu) v, F+mu)y"]

1 2
- M+7—>+7
12 [M(etem — ptum)) p

spin

4

- o) e o)

where m., m, have been neglected.
b) In the center of mass frame, we write the momenta as

p”:(E,0,0,E), p:;,:(E7070a_E)

ky = (EZ) K, = (E—Z) withE-zz’Z

Then the phase space is

d3k A3k
4¢4 (A A N
/(QW) Olptp —k—k )(27r)32w (2m)32w’

&Pk 1 K2dkdQ  dQ
/ VB —w=u) = o / 0B —w) =73 3272

p




2. The Lagrangian for the free photon is of the form,
1
L= _ZFWFW7 where Fj,, = 0,4, — 0, A,

Suppose we add a mass term to this Lagrangian

1
El = _EFNV

1
FrY 4 §M2AMA/L
(a) Find the equation of motion.
(b) From the equation of motion show that
0'A, =0
and use the equation of motion to express Ay in terms of other field variables

(¢) Carry out the quantization procedure and find the eigenvalues of the Hamiltonian.

Solution :

a)
oL oL
= _fHY = 2 A
FrY, oA A

0(0,AL)

Equation of motion
O F™ 4+ > AV =0

b) From equation of motion

3V8MF’“’ + /128”141/ = O7 — 3,,A” =0

and 1
AO == 77261‘}7%‘0
I
¢) Conjugate momenta
7= 87L = _F0i and A° does not have conjugate momenta
- 8(6{)A2) - 9 .] g
Commutation relation,
[ﬂ'i (Ia t) ) Aj (xlat)] = 77;51']'63 (SC - I/) ) [AZ (l‘,t) ) Aj (Il7t)] = 07 [ﬂ-i ($7t) y Mg (xlvt)} =0
Note that we can write 1 1
0 i0 i
and L 1
[A° (x,t), A;(z/,1)] = ——2[8i7ri (z,t), Aj (2, 0)] = —i—28j53 (x —a')
Also

[A° (2, 1), 7 (', 1)) = —%[&W" (2,8), 7 (', 1)] =0

From 7t = —F% = —(9°A* — 9'AY), we get A’ = ' A — 7* = M—lgajaﬂrj — 7', and
. 1 . .
[A° (2,t), O°A" (2, 1)] = [A° (x,1), Eajﬁmj (@', t) — 7' (2/,1)] =0
Equation of motion ' ' .
O FM + 2 A" = 0, or (9,0"+p*)A' =0
Solutions are
_ 3 . X . —
A= [ 30 RN Nl N, = o= IR
W)™ 12,3

Suppose the wave vector is in the z—direction,

k= (k()a 0707 k)



We can choose the polarization vectors as
- - - 1

6“(}{:71) = (Oa]-,OvO)v eﬂ(k,Q) = (0a07170)7 e“(k,?;) = E(kvla()?kO)

with . .
ek, M) - e(k, ) = =y, AN =1,2,3
Since A also satisfies the same Klein-Gordon equation, we can extend the expansion as
d3k
:/7 > ek, Nalk, e ™ +af (b, \)e™™],  w = ko = \/| % |2 + p2
V2w (2T)? | £ 123

Then
%% Doe(k, A) - A(x)]

. Pz

A= Z/ N
. dPx

71/ NCE

e Bk, A) - A(x)]

Commutation relations,

d3 dS ! ik —ik'z’
la(k, \), a / ere ¢ [e(k, \) - DoA(z) — ikoe(k, \) - A(z), (K, N) - B A(x’) + iki)z(k
\/2’/T 2wk 27T) 2wk/
d3$d3 / ka —’Lk).L
/ (e (s Nk (K, N[00 A" (@), A”(2)] — ikoes (b, N)e; (K, N[ A
\/ 2wk (2m) ka/
3 3 4.7 1km 72k' !
- [ (e, N (K, N) (=) 615 (2 — ) (ik) + ko) }
\/ ka 27T ka/
Note that

[ /d?’xd?’x'eik';e*ik/'zlsi(k,)\)sj(k',)\')éf; (x—2) = /d3xd3x’eik';e*ik/'zlsi(k,)\)sj(k',)\/)/d3qei3'(;’

—

_ /d3 d3 / 1(k—q)r —1k—q):r k )\51 k,/ /dS i — quj /d3 53 —> (k'l_z)ﬁi(k,)\)ﬁj(k

kik;
k?

= BP(F— K0 — ZEhyei(k, Nes (K, N) = 63(k — K)[E(k, A) E(k,)\’) Ee(k Nk <E(k,)\’) : Z)]

= S (k—K)

where we have used .
€k, A) - €k, N) = S, €k, \)- k=0

3. In the A¢* theory the interacting Lagrangian is of the form,

A4

Lint = 7@

For the 2-body elastic scattering we need to compute to second order in A the following vacuum expectation
value

G [ ataatzsOfF (600 00) 81 028 1) i) (ot e0)) Gyt 20 ) 0

72 (ylay2,$179€2) =

Use Wick’s theorem to write this matrix element in terms of propagators.

4. The Lagrangian for the free fermion field is of the form,

L=y, —m)y

/ d et <o ‘T (% () 5 (0)) ] o>

Compute the free propagator



Solution : The propagator is defined as,
S0 = [ atee (0] (v, (@) 95 0))]0)
= [ atae (0] (8 o) i () 5 ) = 6 (~0) b5 (0 2)) )

Note that there is a minus sign for the second term due to the fact that fermion fields anti-commute. Write
out the mode expansion,

d3 ) )
bule) = B [ B ua ()7 () v 5) ]
o = % f

By 1
2%)% \2E,

[bT (p/, 8/) g (p/, S/) + d(p/, S/) s (p/7 5’)]

(

Then we get

(0

ba (805 (0)|0)

Z/ d’p = / Y — Uo (py5) € P ug (p,5") (0 [b (p,s) b1 (¢, )] 0)
- (27’()3/2 \/E (271_)% \/E o ) B8 ) ) )
By 1 , dp' 1 ip’

2L, (27)° 28,
> ta (p.5) s (9, 5) = (1 + 1),

where we have used

Similarly,

<0 ‘ﬂ}ﬁ (0) ¥ (z)‘ O> - Z/ éjf;/g 2;})11@ (p',5) vg (p', s) R

d3p/ 1 i
/(%)32]317(1/771)&5@?
and

dy 1
(2m)° 2,

<0 ’ <0 (20) Yo () 15 (0) + 6 (—20) ¥ (0) ¥, (x)) ‘ 0> _ /

where we have used

S o (0.5) 05 (p,) = (1 — ),

Note that . .
1 &e—ngt _ _Zﬁe_'l vt for t>0
2m pg - Eg + ie —imelEpt for 0>t
We then get
d4p eip-a: . d3p —i —in-z RN i T3
/ (2m)t p? — m? +ie W+m) = *Z/ (2r)%2E, [9 (t)e Frtet? (Ewo 7D +m> + O(—t)e'Erteip (pr

3 - = . — =
= / (27332@, [0t e Bte™ P () + () Bt (—f 4 m)]

/ d3p —ipx —ipx
= —i @n)?9E, [6(t)e (F+m)+0(—t)e (=g +m)]

So the fermion propagator is of the form,

d4p ez’p‘w

Sus () = [ atac (01 (v 2) 15 0))[0) = [ G o O s
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