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In classical mechanics or quantum mechanics, we describe the rotation by a linear operator
,operating on the spatial coordinates (x , y , z ),represented by a 3× 3 matrix,

xi −→ x ′i = Rij xj , where RRT = RT R = 1

For example, rotation by an angle θ around z−axis is

Rz (θ) =

 cos θ sin θ 0
− sin θ cos θ 0
0 0 1


Collection of all these rotations forms the rotation group in 3-dimension, O (3) group. To study
the structure of this group, we consider the infinitesmal rotation and write the rotation matrix in
the form,

Rij = δij + ε ij , |ε ij | � 1

and
x ′i = xi + ε ij xj

Orthonality of R ,

δjk = RijRik = (δij + ε ij ) (δik + ε ik ) =⇒ εjk = −εkj
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For example, for rotation around z − axis ,

Rz (θ) −→

 1 θ 0
−θ 1 0
0 0 1

 =⇒ ε12 = −ε21 = θ

and
x ′1 = x1 + θx2, x ′2 = x2 − θx1, x ′3 = x3

Consider f (xi ), an arbitrary function of xi . Under the infinitesimal rotation Rz (θ), the change in
f is

f (x )→ f (x ′1, x
′
2, x
′
3) ≈ f (x1, x2, x3) + θ

(
x1

∂

∂x2
− x2

∂

∂x1

)
f · · ·

Introduce an operator L3 to represent this change,

f (x ′) = f (x )− iθL3f (x ) + · · ·

then

L3 = −i
(
x1

∂

∂x2
− x2

∂

∂x1

)
For the other rotations,
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L1 = −i
(
x2

∂

∂x3
− x3

∂

∂x2

)
, L2 = −i

(
x3

∂

∂x1
− x1

∂

∂x3

)
It is clear that these operators will leave the quadratic form,

x 21 + x
2
2 + x

2
3

invariant.

It is straightforward to show that these operators satisfy

[Li , Lj ] = i ε ijkLk

These are the same as the angular momentum commutation relation.

The operators J1, J2, J3 which satisfy the same commutation relation

[Ji , Jj ] = i ε ijk Jk (1)

are called the generators of R (3) and the commutation relations are called the Lie algebra of
R (3) .
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Representation of R (3) algebra
Any set of matrices D1,D2,D3 which satisfy the same algebra,

[Di ,Dj ] = i ε ijkDk

are called the representation of generators J1, J2, J3.
Note that Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

satisfy the commutation relations[ σi
2
,

σj
2

]
= i ε ijk

σk
2
, i , j , k = 1, 2, 3

So Di =
σi
2
is a representation.

To find other representations, define
J± = J1 ± iJ2

Then
[J±, J3 ] = ∓J±, [J+, J−] = 2J3

Sincce J1, J2, J3 do not commute, only one of them can be diagonal. Suppose |m〉 is an
eigenstate of J3 with eigenvalue m,

J3 |m〉 = m |m〉
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then from these commutation relations,

J3 (J+ |m〉) = (m + 1) (J+ |m〉) , J3 (J− |m〉) = (m − 1) (J− |m〉)

Thus J+ (J−) is the raising(lowering) operator which increases(decrease) m by one unit. Define
total angular momentum operator by

J2 ≡ J21 + J22 + J23 =
1
2

(
J+J− + J−J+ + J23

)
≥ 0 (2)

Then we get [
J2, Ji

]
= 0, for i = 1, 2, 3

and J2 is called Casmir operator, operator which commutes with all the generators in the group.
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Choose the states to be eigenstates of J2, J3, with eigenvalues, λ,m

J2 |λ,m〉 = λ |λ,m〉 , J3 |λ,m〉 = m |λ,m〉

with normalization 〈
λ′,m ′ |λ,m

〉
= δλλ′ δmm ′ (3)

From Eq(2) m,is bounded by
m2 ≤ λ

This makes representation matrices finite dimensional. Since J± |λ,m〉 are eigenstates of J3 with
eigenvalues m ± 1, we can write

J± |λ,m〉 = C± (λ,m) |λ,m ± 1〉 ,

Here C± (λ,m) are constants to be determined by the normalization conditions in Eq(3). Since
λ−m2 ≥ 0, eigenvalue m2 is bounded. Thus for largest value of m, say m = j , we have

J+ |λ, j〉 = 0,

We can write J2 as

J2 =
1
2

(
J+J− + J−J+ + J23

)
= J−J+ + J23 + J3

Applying this on |λ, j〉 , (
λ− j2 − j

)
|λ, j〉 = 0, ⇒ λ = j (j + 1)
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Similarly, for smallest value of m, say m = j ′,

J−
∣∣λ, j ′〉 = 0, and λ = j ′

(
j ′ − 1

)
Combing these two

j (j + 1) = j
′ (
j ′ − 1

)
, ⇒ j = −j ′, or j ′ = j + 1

The solution j ′ = j + 1 is wrong. Thus we get j = −j ′. Since J− decreases value of m by 1 each
time,

j − j ′ = 2j = integer, ⇒ j integer or half integer

Use parameter j to label the state

J2 |j ,m〉 = j (j + 1) |j ,m〉
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The coeffi cients C± (λ,m) can be calculated as follows,

J+ |j ,m〉 = C+ (j ,m) |j ,m + 1〉 , 〈j ,m| J− = 〈j ,m + 1|C ∗+ (j ,m)

〈j ,m| J−J+ |j ,m〉 = |C+ (j ,m) |2

On the other hand,

〈j ,m| J−J+ |j ,m〉 = 〈j ,m|
(
J2 − J23 − J3

)
|j ,m〉 =

[
j (j + 1)−m2 −m

]
= (j −m) (j +m + 1)

We can then take
C+ (j ,m) =

√
(j −m) (j +m + 1)

Similarly,

C− (j ,m) =
√
(j +m) (j −m + 1)

To summarize, the states |j ,m〉 , m = −j ,−j + 1, . . . j − 1, j form the basis of the irreducible
representation characterized by j . These states have the following properties,

J2 |j ,m〉 = j (j + 1) |j ,m〉 , J3 |j ,m〉 = m |j ,m〉 (4)

J+ |j ,m〉 =
√
(j −m) (j +m + 1) |j ,m + 1〉 , J− |j ,m〉 =

√
(j +m) (j −m + 1) |j ,m − 1〉

(5)
Note that we can get the matrix elements of J1, J2 by using the relations,

J1 =
1
2
(J+ + J−) , J2 =

1
2i
(J+ − J−)

Thus for a given value of j , the matrices contructed for J1, J2 and J3 will satisfy the angular
momentum algebra given in Eq(1) and they are the irreps of SU (2) group.
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Example: j = 1
2 ,m = ±

1
2

J3

∣∣∣∣ 12 ,± 12
〉
= ± 1

2

∣∣∣∣ 12 ,± 12
〉

Denote ∣∣∣∣ 12 , 12
〉
=

(
1
0

)
,

∣∣∣∣ 12 ,− 12
〉
=

(
0
1

)
Then

J3 =
1
2

(
1 0
0 −1

)
From

J+

∣∣∣∣ 12 , 12
〉
= 0, J+

∣∣∣∣ 12 ,− 12
〉
=

∣∣∣∣ 12 , 12
〉

we get

J+ =
(
0 1
0 0

)
Also

J− =
(
0 0
1 0

)
Then

Jx =
1
2
(J+ + J−) =

1
2

(
0 1
1 0

)
, Jy =

1
2i
(J+ − J−) =

1
2

(
0 −i
i 0

)
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Example : j = 1,m == −1, 0, 1
Denote

|1, 1〉 =

 1
0
0

 , |1, 0〉 =

 0
1
0

 , |1,−1〉 =

 1
0
0


Then from

J3 |1,±1〉 = ± |1,±1〉 , J3 |1, 0〉 = 0

we get

J3 =

 1 0 0
0 0 0
0 0 −1


From

J+ |1, 1〉 = 0, J+ |1, 0〉 =
√
2 |1, 1〉 , J+ |1,−1〉 =

√
2 |1, 0〉

we get

J+ =

 0
√
2 0

0 0
√
2

0 0 0


and

J− = (J+)
† =

 0 0 0√
2 0 0
0

√
2 0
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Then

Jx =
1
2
(J+ + J−) =

1√
2

 0 1 0
1 0 1
0 1 0

 , Jy =
1
2i
(J+ − J−) =

1√
2

 0 −i 0
i 0 −i
0 i 0
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Note that for j = integer ,

J1 = −i
(
x2

∂

∂x3
− x3

∂

∂x2

)
, J2 = −i

(
x3

∂

∂x1
− x1

∂

∂x3

)
, J3 = −i

(
x1

∂

∂x2
− x2

∂

∂x1

)
Then

J3x3 = 0, J3x1 = ix2, J3x2 = −ix1

which implies

J3 (x1 + ix2) = (x1 + ix2) J3 (x1 − ix2) = − (x1 − ix2)

Similarly,
J1 (x1 + ix2) = −x3, J1 (x1 − ix2) = x3,

Basis for the standard representation are

x+ = −
x1 + ix2√

2
, x3, x− =

x1 − ix2√
2

Ling-Fong Li ( ) Quantum Field Theory, Ch2 Supplement 13 / 21



SU(2) group
Set of 2× 2 unitary matrices with determinant 1 form SU (2) group.
In general, n × n unitary matrix U can be written as

U = e iH H : n × n hermitian matrix

From the identity
detU = e iTrH

we get
TrH = 0 if detU = 1

Thus n × n unitary matrices U can be written in terms of n × n traceless Hermitian matrices.

Note that Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
is a complete set of 2× 2 hermitian traceless matrices. We can use them to describe SU (2)
matrices.
Define Ji =

σi
2 . We can compute the commutators

[J1, J2 ] = iJ3 , [J2, J3 ] = iJ1 , [J3, J1 ] = iJ2 (6)

This is the Lie algebra of SU (2) symmetry. This is exactly the same as the commutation
relation of angular momentum in quantum mechanics.
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SU(2) and rotation group
Eventhough rotation group O (3) and the unitary group SU (2) are two different groups. It turns
out that their structures are almost the same. We will now illustrate this connection.
As we discussed above, the generators of SU (2) group are Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

Let
→
r = (x , y , z ) be arbitrary vector in R3 (3 dimensional coordinate space). Define a 2× 2

matrix h by

h =~σ ·→r =
(

z x − iy
x + iy −z

)
This matrix has the following properties;

1 h+ = h

2 Trh = 0

det h = −(x 2 + y 2 + z 2)Let U be a 2× 2 unitary matrix with detU = 1. Consider the
transformation

h → h′ = UhU †

The new matrix h′ will have the same properties as h;

1 h′+ = h′

2 Trh′ = 0
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3 det h′ = det h

Properties (1)&(2) imply that h′ can also be expanded in terms of Pauli matrices

h′ =~r ′ ·~σ →r = (x ′, y ′, z ′)

Then from the property (3) we get

det h′ = det h ⇒ x ′2 + y ′2 + z ′2 = x 2 + y 2 + z 2

Thus relation between
→
r and

→
r
′
is a rotation. This means that an arbitrary 2× 2 unitary matrix

U induces a rotation in R3 . This provides a connection between SU (2) and O (3) groups. Note
that U and (−U ) will give the same rotation.
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Example 1 U is diagonal
Then U is of the form,

U =
(
e iα/2 0
0 e−iα/2

)
The 2× 2 hermitian matrix h′ is

h′ = UhU † =

(
e iα/2 0
0 e−iα/2

)(
z x − iy

x + iy −z

)(
e−iα/2 0
0 e iα/2

)
=

(
z (x − iy ) e iα

(x + iy ) e−iα −z

)
=

(
z ′ x ′ − iy ′

x ′ + iy ′ −z ′
)

The relation between new coeffi cients x ′, y ′, z ′ and the old ones x , y , z are

x ′ = cos αx + sin αy

y ′ = − sin αx + cos αy

z ′ = z ,

This is clearly a rotation of angle α about z -axis.
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Example 2 U is real
We can write this as

U =
(
cos β/2 − sin β/2
sin β/2 cos β/2

)
Then the transformation is of the form

h′ = UhU † =

(
cos β/2 − sin β/2
sin β/2 cos β/2

)(
z x − iy

x + iy −z

)(
cos β/2 sin β/2
− sin β/2 cos β/2

)
=

(
z cos β− x sin β x cos β− iy + z sin β

iy + x cos β+ z sin β x sin β− z cos β

)
=

(
z ′ x ′ − iy ′

x ′ + iy ′ −z ′
)

The relations are
x ′ = x cos β+ z sin β

y ′ = y

z ′ = −x sin β+ z cos β

This is a rotation of angle β about the y -axis.
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Rotation group & QM
We now discuss the usage of group theory to study the problems with rotational symmetry in
quantum mechanics.
Rotation in R3 can be represented as linear transformations on the coordinates

→
r = (x , y , z ) = (r1, r2, r3) , ri → r ′i = RijXj RRT = 1 = RT R

Consider an arbitary function of coordinates, f (
→
r ) = f (x , y , z ). Under the rotation, the change

in f is
f (ri )→ f (Rij rj ) = f

′(ri )

If f = f ′ we say f is invariant under rotation, e.g. f (ri ) = f (r ), r =
√
x 2 + y 2 + z 2

In quantum mechanics, we implement the rotation of the coordinates by a unitary operator U
operating on the physical states |ψ〉 with the properties,

|ψ〉 → |ψ′〉 = U |ψ〉, O → O ′ = UOU †

so that
⇒ 〈ψ′|O ′|ψ′〉 = 〈ψ|O |ψ〉

This simply means that physical quantites 〈ψ|O |ψ〉 are independent of the orientation of the
coordinate axis.
If O ′ = O , we say O is invariant under rotation,

O = UOU †, or UO = OU , =⇒ [O ,U ] = 0
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So rotational invariance of operator O , means it commutes with the roational operator U . In

terms of infinitesimal generators of rotation
→
L , we have

U = e−iθ~n·
→
L

This implies
[Li ,O ] = 0, i = 1, 2, 3

For the case where O is the Hamiltonian H , this gives

[Li ,H ] = 0

Let |ψ〉 be an eigenstate of H with eigenvaule E ,

H |ψ〉 = E |ψ〉

then rotational invariance of H implies

(LiH −HLi )|ψ〉 = 0 ⇒ H (Li |ψ〉) = E (Li |ψ〉)

i .e |ψ〉 & li |ψ〉 are degenerate. For example, let |ψ〉 = |j ,m〉 the eigenstates of angular
momentum, then L±|j .m〉 are also eigenstates if |ψ〉 is eigenstate of H. This means
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for a given l , the degeneracy is (2l + 1) as a result of rotional invariance of the Hamiltonian.
Take for example the Hamiltonian of the hydrogen atom,

H = − }
2

2m
∇2 − Ze2

4πε0r

which is invariant under the rotation, i.e.

[Li ,H ] = 0

Then the l = 0 (s state) is non-degenerate, l = 1 (p states) has 2l + 1 = 3 degeneracy, l = 2 (d
states) has 2l + 1 = 5 degeneracy,· · · etc . Thus there is an intimate relation between the
dimensionality of irrep and the degeneracy of the eigenstates of the Hamiltonian. Roughly
speaking, Hamiltonian can not distinguish between different states within the irrep becasuse of
the symmetry.
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