Quantum Field Theory, Ch2 Supplement

Ling-Fong Li

In classical mechanics or quantum mechanics, we describe the rotation by a linear operator ,operating on the spatial coordinates (x, y, z), represented by a 3×3 matrix,

$$
x_{i} \longrightarrow x_{i}^{\prime}=R_{i j} x_{j}, \quad \text { where } \quad R R^{T}=R^{T} R=1
$$

For example, rotation by an angle θ around z-axis is

$$
R_{z}(\theta)=\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Collection of all these rotations forms the rotation group in 3-dimension, $O(3)$ group. To study the structure of this group, we consider the infinitesmal rotation and write the rotation matrix in the form,

$$
R_{i j}=\delta_{i j}+\varepsilon_{i j}, \quad\left|\varepsilon_{i j}\right| \ll 1
$$

and

$$
x_{i}^{\prime}=x_{i}+\varepsilon_{i j} x_{j}
$$

Orthonality of R,

$$
\delta_{j k}=R_{i j} R_{i k}=\left(\delta_{i j}+\varepsilon_{i j}\right)\left(\delta_{i k}+\varepsilon_{i k}\right) \quad \Longrightarrow \quad \varepsilon_{j k}=-\varepsilon_{k j}
$$

For example, for rotation around z - axis,

$$
R_{z}(\theta) \longrightarrow\left(\begin{array}{ccc}
1 & \theta & 0 \\
-\theta & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \Longrightarrow \quad \varepsilon_{12}=-\varepsilon_{21}=\theta
$$

and

$$
x_{1}^{\prime}=x_{1}+\theta x_{2}, \quad x_{2}^{\prime}=x_{2}-\theta x_{1}, \quad x_{3}^{\prime}=x_{3}
$$

Consider $f\left(x_{i}\right)$, an arbitrary function of x_{i}. Under the infinitesimal rotation $R_{z}(\theta)$, the change in f is

$$
f(x) \rightarrow f\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) \approx f\left(x_{1}, x_{2}, x_{3}\right)+\theta\left(x_{1} \frac{\partial}{\partial x_{2}}-x_{2} \frac{\partial}{\partial x_{1}}\right) f \ldots
$$

Introduce an operator L_{3} to represent this change,

$$
f\left(x^{\prime}\right)=f(x)-i \theta L_{3} f(x)+\cdots
$$

then

$$
L_{3}=-i\left(x_{1} \frac{\partial}{\partial x_{2}}-x_{2} \frac{\partial}{\partial x_{1}}\right)
$$

For the other rotations,

$$
L_{1}=-i\left(x_{2} \frac{\partial}{\partial x_{3}}-x_{3} \frac{\partial}{\partial x_{2}}\right), \quad L_{2}=-i\left(x_{3} \frac{\partial}{\partial x_{1}}-x_{1} \frac{\partial}{\partial x_{3}}\right)
$$

It is clear that these operators will leave the quadratic form,

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}
$$

invariant.

It is straightforward to show that these operators satisfy

$$
\left[L_{i}, L_{j}\right]=i \varepsilon_{i j k} L_{k}
$$

These are the same as the angular momentum commutation relation.

The operators J_{1}, J_{2}, J_{3} which satisfy the same commutation relation

$$
\begin{equation*}
\left[J_{i}, J_{j}\right]=i \varepsilon_{i j k} J_{k} \tag{1}
\end{equation*}
$$

are called the generators of $R(3)$ and the commutation relations are called the Lie algebra of $R(3)$.

Representation of $R(3)$ algebra

Any set of matrices D_{1}, D_{2}, D_{3} which satisfy the same algebra,

$$
\left[D_{i}, D_{j}\right]=i \varepsilon_{i j k} D_{k}
$$

are called the representation of generators J_{1}, J_{2}, J_{3}.
Note that Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

satisfy the commutation relations

$$
\left[\frac{\sigma_{i}}{2}, \frac{\sigma_{j}}{2}\right]=i \varepsilon_{i j k} \frac{\sigma_{k}}{2}, \quad i, j, k=1,2,3
$$

So $D_{i}=\frac{\sigma_{i}}{2}$ is a representation.
To find other representations, define

$$
J_{ \pm}=J_{1} \pm i J_{2}
$$

Then

$$
\left[J_{ \pm}, J_{3}\right]=\mp J_{ \pm}, \quad\left[J_{+}, J_{-}\right]=2 J_{3}
$$

Sincce J_{1}, J_{2}, J_{3} do not commute, only one of them can be diagonal. Suppose $|m\rangle$ is an eigenstate of J_{3} with eigenvalue m,

$$
J_{3}|m\rangle=m|m\rangle
$$

then from these commutation relations,

$$
J_{3}\left(J_{+}|m\rangle\right)=(m+1)\left(J_{+}|m\rangle\right), \quad J_{3}\left(J_{-}|m\rangle\right)=(m-1)\left(J_{-}|m\rangle\right)
$$

Thus $J_{+}\left(J_{-}\right)$is the raising(lowering) operator which increases(decrease) m by one unit. Define total angular momentum operator by

$$
\begin{equation*}
J^{2} \equiv J_{1}^{2}+J_{2}^{2}+J_{3}^{2}=\frac{1}{2}\left(J_{+} J_{-}+J_{-} J_{+}+J_{3}^{2}\right) \geq 0 \tag{2}
\end{equation*}
$$

Then we get

$$
\left[J^{2}, J_{i}\right]=0, \quad \text { for } \quad i=1,2,3
$$

and J^{2} is called Casmir operator, operator which commutes with all the generators in the group.

Choose the states to be eigenstates of J^{2}, J_{3}, with eigenvalues, λ, m

$$
J^{2}|\lambda, m\rangle=\lambda|\lambda, m\rangle, \quad J_{3}|\lambda, m\rangle=m|\lambda, m\rangle
$$

with normalization

$$
\begin{equation*}
\left\langle\lambda^{\prime}, m^{\prime} \mid \lambda, m\right\rangle=\delta_{\lambda \lambda^{\prime}} \delta_{m m^{\prime}} \tag{3}
\end{equation*}
$$

From $\mathrm{Eq}(2) m$, is bounded by

$$
m^{2} \leq \lambda
$$

This makes representation matrices finite dimensional. Since $J_{ \pm}|\lambda, m\rangle$ are eigenstates of J_{3} with eigenvalues $m \pm 1$, we can write

$$
J_{ \pm}|\lambda, m\rangle=C_{ \pm}(\lambda, m)|\lambda, m \pm 1\rangle,
$$

Here $C_{ \pm}(\lambda, m)$ are constants to be determined by the normalization conditions in $\mathrm{Eq}(3)$. Since $\lambda-m^{2} \geq 0$, eigenvalue m^{2} is bounded. Thus for largest value of m, say $m=j$, we have

$$
J_{+}|\lambda, j\rangle=0,
$$

We can write J^{2} as

$$
J^{2}=\frac{1}{2}\left(J_{+} J_{-}+J_{-} J_{+}+J_{3}^{2}\right)=J_{-} J_{+}+J_{3}^{2}+J_{3}
$$

Applying this on $|\lambda, j\rangle$,

$$
\left(\lambda-j^{2}-j\right)|\lambda, j\rangle=0, \quad \Rightarrow \quad \lambda=j(j+1)
$$

Similarly, for smallest value of m, say $m=j^{\prime}$,

$$
J_{-}\left|\lambda, j^{\prime}\right\rangle=0, \quad \text { and } \quad \lambda=j^{\prime}\left(j^{\prime}-1\right)
$$

Combing these two

$$
j(j+1)=j^{\prime}\left(j^{\prime}-1\right), \quad \Rightarrow \quad j=-j^{\prime}, \quad \text { or } \quad j^{\prime}=j+1
$$

The solution $j^{\prime}=j+1$ is wrong. Thus we get $j=-j^{\prime}$. Since J_{-}decreases value of m by 1 each time,

$$
j-j^{\prime}=2 j=\text { integer, } \quad \Rightarrow \quad j \text { integer or half integer }
$$

Use parameter j to label the state

$$
J^{2}|j, m\rangle=j(j+1)|j, m\rangle
$$

The coefficients $C_{ \pm}(\lambda, m)$ can be calculated as follows,

$$
\begin{gathered}
J_{+}|j, m\rangle=C_{+}(j, m)|j, m+1\rangle, \quad\langle j, m| J_{-}=\langle j, m+1| C_{+}^{*}(j, m) \\
\langle j, m| J_{-} J_{+}|j, m\rangle=\left|C_{+}(j, m)\right|^{2}
\end{gathered}
$$

On the other hand,

$$
\langle j, m| J_{-} J_{+}|j, m\rangle=\langle j, m|\left(J^{2}-J_{3}^{2}-J_{3}\right)|j, m\rangle=\left[j(j+1)-m^{2}-m\right]=(j-m)(j+m+1)
$$

We can then take

$$
C_{+}(j, m)=\sqrt{(j-m)(j+m+1)}
$$

Similarly,

$$
C_{-}(j, m)=\sqrt{(j+m)(j-m+1)}
$$

To summarize, the states $|j, m\rangle, m=-j,-j+1, \ldots j-1, j$ form the basis of the irreducible representation characterized by j. These states have the following properties,

$$
\begin{gather*}
J^{2}|j, m\rangle=j(j+1)|j, m\rangle, \quad J_{3}|j, m\rangle=m|j, m\rangle \tag{4}\\
J_{+}|j, m\rangle=\sqrt{(j-m)(j+m+1)}|j, m+1\rangle, \quad J_{-}|j, m\rangle=\sqrt{(j+m)(j-m+1)}|j, m-1\rangle \tag{5}
\end{gather*}
$$

Note that we can get the matrix elements of J_{1}, J_{2} by using the relations,

$$
J_{1}=\frac{1}{2}\left(J_{+}+J_{-}\right), \quad J_{2}=\frac{1}{2 i}\left(J_{+}-J_{-}\right)
$$

Thus for a given value of j, the matrices contructed for J_{1}, J_{2} and J_{3} will satisfy the angular momentum algebra given in $\mathrm{Eq}(1)$ and they are the irreps of $S U(2)$ group.

Example: $j=\frac{1}{2}, m= \pm \frac{1}{2}$

$$
J_{3}\left|\frac{1}{2}, \pm \frac{1}{2}\right\rangle= \pm \frac{1}{2}\left|\frac{1}{2}, \pm \frac{1}{2}\right\rangle
$$

Denote

$$
\left|\frac{1}{2}, \frac{1}{2}\right\rangle=\binom{1}{0}, \quad\left|\frac{1}{2},-\frac{1}{2}\right\rangle=\binom{0}{1}
$$

Then

$$
J_{3}=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

From

$$
J_{+}\left|\frac{1}{2}, \frac{1}{2}\right\rangle=0, \quad J_{+}\left|\frac{1}{2},-\frac{1}{2}\right\rangle=\left|\frac{1}{2}, \frac{1}{2}\right\rangle
$$

we get

$$
J_{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

Also

$$
J_{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Then

$$
J_{x}=\frac{1}{2}\left(J_{+}+J_{-}\right)=\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad J_{y}=\frac{1}{2 i}\left(J_{+}-J_{-}\right)=\frac{1}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

Example : $j=1, m==-1,0,1$
Denote

$$
|1,1\rangle=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad|1,0\rangle=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad|1,-1\rangle=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

Then from

$$
J_{3}|1, \pm 1\rangle= \pm|1, \pm 1\rangle, \quad J_{3}|1,0\rangle=0
$$

we get

$$
J_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

From

$$
J_{+}|1,1\rangle=0, \quad J_{+}|1,0\rangle=\sqrt{2}|1,1\rangle, \quad J_{+}|1,-1\rangle=\sqrt{2}|1,0\rangle
$$

we get

$$
J_{+}=\left(\begin{array}{ccc}
0 & \sqrt{2} & 0 \\
0 & 0 & \sqrt{2} \\
0 & 0 & 0
\end{array}\right)
$$

and

$$
J_{-}=\left(J_{+}\right)^{+}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
\sqrt{2} & 0 & 0 \\
0 & \sqrt{2} & 0
\end{array}\right)
$$

Then

$$
J_{x}=\frac{1}{2}\left(J_{+}+J_{-}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad J_{y}=\frac{1}{2 i}\left(J_{+}-J_{-}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right)
$$

Note that for $j=$ integer,

$$
J_{1}=-i\left(x_{2} \frac{\partial}{\partial x_{3}}-x_{3} \frac{\partial}{\partial x_{2}}\right), \quad J_{2}=-i\left(x_{3} \frac{\partial}{\partial x_{1}}-x_{1} \frac{\partial}{\partial x_{3}}\right), \quad J_{3}=-i\left(x_{1} \frac{\partial}{\partial x_{2}}-x_{2} \frac{\partial}{\partial x_{1}}\right)
$$

Then

$$
J_{3} x_{3}=0, \quad J_{3} x_{1}=i x_{2}, \quad J_{3} x_{2}=-i x_{1}
$$

which implies

$$
J_{3}\left(x_{1}+i x_{2}\right)=\left(x_{1}+i x_{2}\right) \quad J_{3}\left(x_{1}-i x_{2}\right)=-\left(x_{1}-i x_{2}\right)
$$

Similarly,

$$
J_{1}\left(x_{1}+i x_{2}\right)=-x_{3}, \quad J_{1}\left(x_{1}-i x_{2}\right)=x_{3}
$$

Basis for the standard representation are

$$
x_{+}=-\frac{x_{1}+i x_{2}}{\sqrt{2}}, \quad x_{3}, \quad x_{-}=\frac{x_{1}-i x_{2}}{\sqrt{2}}
$$

SU(2) group

Set of 2×2 unitary matrices with determinant 1 form $S U(2)$ group.
In general, $n \times n$ unitary matrix U can be written as

$$
U=e^{i H} \quad H: n \times n \text { hermitian matrix }
$$

From the identity

$$
\operatorname{det} U=e^{i T r H}
$$

we get

$$
\operatorname{Tr} H=0 \quad \text { if } \quad \operatorname{det} U=1
$$

Thus $n \times n$ unitary matrices U can be written in terms of $n \times n$ traceless Hermitian matrices.

Note that Pauli matrices:

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad, \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad, \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

is a complete set of 2×2 hermitian traceless matrices. We can use them to describe $S U$ (2) matrices.
Define $J_{i}=\frac{\sigma_{i}}{2}$. We can compute the commutators

$$
\begin{equation*}
\left[J_{1}, J_{2}\right]=i J_{3} \quad, \quad\left[J_{2}, J_{3}\right]=i J_{1}, \quad\left[J_{3}, J_{1}\right]=i J_{2} \tag{6}
\end{equation*}
$$

This is the Lie algebra of $S U(2)$ symmetry. This is exactly the same as the commutation relation of angular momentum in quantum mechanics.

SU(2) and rotation group

Eventhough rotation group $O(3)$ and the unitary group $S U(2)$ are two different groups. It turns out that their structures are almost the same. We will now illustrate this connection.
As we discussed above, the generators of $S U(2)$ group are Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad, \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad, \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Let $\vec{r}=(x, y, z)$ be arbitrary vector in R_{3} (3 dimensional coordinate space). Define a 2×2 matrix h by

$$
h=\vec{\sigma} \cdot \vec{r}=\left(\begin{array}{cc}
z & x-i y \\
x+i y & -z
\end{array}\right)
$$

This matrix has the following properties;
(1) $h^{+}=h$
(2) $\operatorname{Tr} h=0$
det $h=-\left(x^{2}+y^{2}+z^{2}\right)$ Let U be a 2×2 unitary matrix with $\operatorname{det} U=1$. Consider the transformation

$$
h \rightarrow h^{\prime}=U h U^{+}
$$

The new matrix h^{\prime} will have the same properties as h;
(1) $h^{\prime+}=h^{\prime}$
(2) $T r h^{\prime}=0$
(3) $\operatorname{det} h^{\prime}=\operatorname{det} h$

Properties (1)\&(2) imply that h^{\prime} can also be expanded in terms of Pauli matrices

$$
h^{\prime}=\vec{r}^{\prime} \cdot \vec{\sigma} \vec{r}=\left(x^{\prime}, y^{\prime}, z^{\prime}\right)
$$

Then from the property (3) we get

$$
\operatorname{det} h^{\prime}=\operatorname{det} h \Rightarrow x^{\prime 2}+y^{\prime 2}+z^{\prime 2}=x^{2}+y^{2}+z^{2}
$$

Thus relation between \vec{r} and \vec{r}^{\prime} is a rotation. This means that an arbitrary 2×2 unitary matrix U induces a rotation in R_{3}. This provides a connection between $S U(2)$ and $O(3)$ groups. Note that U and $(-U)$ will give the same rotation.

Example $1 U$ is diagonal

Then U is of the form,

$$
U=\left(\begin{array}{cc}
e^{i \alpha / 2} & 0 \\
0 & e^{-i \alpha / 2}
\end{array}\right)
$$

The 2×2 hermitian matrix h^{\prime} is

$$
\begin{aligned}
h^{\prime} & =U h U^{+}=\left(\begin{array}{cc}
e^{i \alpha / 2} & 0 \\
0 & e^{-i \alpha / 2}
\end{array}\right)\left(\begin{array}{cc}
z & x-i y \\
x+i y & -z
\end{array}\right)\left(\begin{array}{cc}
e^{-i \alpha / 2} & 0 \\
0 & e^{i \alpha / 2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
z & (x-i y) e^{i \alpha} \\
(x+i y) e^{-i \alpha} & -z
\end{array}\right)=\left(\begin{array}{cc}
z^{\prime} & x^{\prime}-i y^{\prime} \\
x^{\prime}+i y^{\prime} & -z^{\prime}
\end{array}\right)
\end{aligned}
$$

The relation between new coefficients $x^{\prime}, y^{\prime}, z^{\prime}$ and the old ones x, y, z are

$$
\begin{aligned}
x^{\prime} & =\cos \alpha x+\sin \alpha y \\
y^{\prime} & =-\sin \alpha x+\cos \alpha y \\
z^{\prime} & =z
\end{aligned}
$$

This is clearly a rotation of angle α about z-axis.

Example $2 U$ is real

We can write this as

$$
U=\left(\begin{array}{cc}
\cos \beta / 2 & -\sin \beta / 2 \\
\sin \beta / 2 & \cos \beta / 2
\end{array}\right)
$$

Then the transformation is of the form

$$
\begin{aligned}
h^{\prime} & =U h U^{+}=\left(\begin{array}{cc}
\cos \beta / 2 & -\sin \beta / 2 \\
\sin \beta / 2 & \cos \beta / 2
\end{array}\right)\left(\begin{array}{cc}
z & x-i y \\
x+i y & -z
\end{array}\right)\left(\begin{array}{cc}
\cos \beta / 2 & \sin \beta / 2 \\
-\sin \beta / 2 & \cos \beta / 2
\end{array}\right) \\
& =\left(\begin{array}{cc}
z \cos \beta-x \sin \beta & x \cos \beta-i y+z \sin \beta \\
i y+x \cos \beta+z \sin \beta & x \sin \beta-z \cos \beta
\end{array}\right)=\left(\begin{array}{cc}
z^{\prime} & x^{\prime}-i y^{\prime} \\
x^{\prime}+i y^{\prime} & -z^{\prime}
\end{array}\right)
\end{aligned}
$$

The relations are

$$
\begin{aligned}
& x^{\prime}=x \cos \beta+z \sin \beta \\
& y^{\prime}=y \\
& z^{\prime}=-x \sin \beta+z \cos \beta
\end{aligned}
$$

This is a rotation of angle β about the y-axis.

Rotation group \& QM

We now discuss the usage of group theory to study the problems with rotational symmetry in quantum mechanics.
Rotation in R_{3} can be represented as linear transformations on the coordinates

$$
\vec{r}=(x, y, z)=\left(r_{1}, r_{2}, r_{3}\right) \quad, \quad r_{i} \rightarrow r_{i}^{\prime}=R_{i j} X_{j} \quad R R^{T}=1=R^{T} R
$$

Consider an arbitary function of coordinates, $f(\vec{r})=f(x, y, z)$. Under the rotation, the change in f is

$$
f\left(r_{i}\right) \rightarrow f\left(R_{i j} r_{j}\right)=f^{\prime}\left(r_{i}\right)
$$

If $f=f^{\prime}$ we say f is invariant under rotation, e.g. $f\left(r_{i}\right)=f(r), r=\sqrt{x^{2}+y^{2}+z^{2}}$ In quantum mechanics, we implement the rotation of the coordinates by a unitary operator U operating on the physical states $|\psi\rangle$ with the properties,

$$
|\psi\rangle \rightarrow\left|\psi^{\prime}\right\rangle=U|\psi\rangle, \quad O \rightarrow O^{\prime}=U O U^{+}
$$

so that

$$
\Rightarrow\left\langle\psi^{\prime}\right| O^{\prime}\left|\psi^{\prime}\right\rangle=\langle\psi| O|\psi\rangle
$$

This simply means that physical quantites $\langle\psi| O|\psi\rangle$ are independent of the orientation of the coordinate axis.
If $O^{\prime}=O$, we say O is invariant under rotation,

$$
O=U O U^{+}, \quad \text { or } U O=O U, \quad \Longrightarrow \quad[O, U]=0
$$

So rotational invariance of operator O, means it commutes with the roational operator U. In terms of infinitesimal generators of rotation \vec{L}, we have

$$
U=e^{-i \theta \vec{n} \cdot \vec{L}}
$$

This implies

$$
\left[L_{i}, O\right]=0, \quad i=1,2,3
$$

For the case where O is the Hamiltonian H, this gives

$$
\left[L_{i}, H\right]=0
$$

Let $|\psi\rangle$ be an eigenstate of H with eigenvaule E,

$$
H|\psi\rangle=E|\psi\rangle
$$

then rotational invariance of H implies

$$
\left(L_{i} H-H L_{i}\right)|\psi\rangle=0 \quad \Rightarrow \quad H\left(L_{i}|\psi\rangle\right)=E\left(L_{i}|\psi\rangle\right)
$$

i.e $\quad|\psi\rangle \& I_{i}|\psi\rangle$ are degenerate. For example, let $|\psi\rangle=|j, m\rangle$ the eigenstates of angular momentum, then $L_{ \pm}|j . m\rangle$ are also eigenstates if $|\psi\rangle$ is eigenstate of H . This means
for a given $/$, the degeneracy is $(2 I+1)$ as a result of rotional invariance of the Hamiltonian. Take for example the Hamiltonian of the hydrogen atom,

$$
H=-\frac{\hbar^{2}}{2 m} \nabla^{2}-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r}
$$

which is invariant under the rotation, i.e.

$$
\left[L_{i}, H\right]=0
$$

Then the $I=0$ (s state) is non-degenerate, $I=1$ (p states) has $2 I+1=3$ degeneracy, $I=2$ (d states) has $2 l+1=5$ degeneracy, \cdots etc. Thus there is an intimate relation between the dimensionality of irrep and the degeneracy of the eigenstates of the Hamiltonian. Roughly speaking, Hamiltonian can not distinguish between different states within the irrep becasuse of the symmetry.

