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1 Appendix 1 local symmetries

1.1 Ablian local symmtry

Since the local symmetry now plays a very important role in the formulation of theories of fundamental
interactions. Here we give a historical origin of the local symmetry.

The free Maxwll’s equations are

→
∇ ·

→
B = 0,

→
∇×−→E +

∂
−→
B

∂t
= 0,

−→
B = ∇×−→A, −→

E = −∇φ− ∂
−→
A

∂t

We can solve the first two equations by introducibg vector and scalar potentials
−→
A, φ as

−→
B = ∇×−→A, −→

E = −∇φ− ∂
−→
A

∂t
(1)

It is convenient to write these relations as

Fµν = ∂µAν − ∂νAµ with F 0i = ∂0Ai − ∂iA0 = −Ei, F ij = ∂iAj − ∂jAi = −εijkBk

For a charge particle moving in the electromagnetic field, the force in the equation of motion is the Lorentz
force,

m
d2
→
x

dt2
= e

(−→
E +

→
v ×−→B

)
The Lagrangian for these equations is

L =
1

2
m
(→
v
)2

+ e
→
A ·→v − eA0

To see this we compute the derivatives with respect to
→
x and

→
v ,

∂L

∂vi
= mvi + eAi,

∂L

∂xi
= e

∂Aj
∂xi

vj − e
∂A0
∂xi

and
d

dt

(
∂L

∂vi

)
= m

dvi
dt

+ e
∂Ai
∂xj

dxj
dt

+ e
∂Ai
∂t



Thus the Euler-Lagrange equation gives

m
dvi
dt

+ e
∂Ai
∂xj

dxj
dt

+ e
∂Ai
∂t

= e
∂Aj
∂xi

vj − e
∂A0
∂xi

On the other hand,(→
v ×−→B

)
i

= εijkvjBk = εijkvjεklm∂lAm = vj (δilδjm − δimδjl) ∂lAm = vj (∂iAj − ∂jAi)

Then we get

m
dvi
dt

= −e∂Ai
∂xj

vj − e
∂Ai
∂t

+ e
∂Aj
∂xi

vj − e
∂A0
∂xi

Or

m
dvi
dt

= e (∂iAj − ∂jAi) vj + e (−∂iA0 − ∂0Ai) = e
(−→
E +

→
v ×−→B

)
i

which is the correct equation of motion.
From the Lagrangian we define the conjugate momentum,

pi =
∂L

∂vi
= mvi + eAi, =⇒ vi =

1

m
(pi − eAi)

Note that this is one of the examples where the conjugate momenta is not simply m
→
p . The Hamiltonian

is then

H = pivi − L = pivi −
1

2
m
(→
v
)2
− e
→
A ·→v + eA0

=
1

2m

(
→
p − e

→
A

)2
+ eA0

Note that we can obain this Hamitonian from the free Hamiltonian H =
→
p
2
/2m by the substition,

→
p −→ →

p − e
→
A, H −→ H − eA0

Or
pµ −→ pµ − eAµ

This is usally called the principle of minimal substitution.
The Schrodinger equation for a charged particle moving in the electromagnetic field is of the form,

[− 1

2m

(
→
∇− ie

→
A

)2
+ eA0]ψ = i

∂ψ

∂t

This shows that it is the potentials
→
A,A0,not the

−→
E ,
−→
B fields show up in the Schrodinger equation. However,

Schrodinger equation is not invariant under the gauge transformation,

Aµ −→ Aµ + ∂µα, or
→
A −→

→
A −

→
∇α, A0 −→ A0 + ∂0α

But it turns out that we can recover the Schrodinger equation if we also change the wave function ψ by a
phase,

ψ −→ ψ′ = e−ieαψ

This can be seen as follows. Define the covariant derivative as

→
Dψ =

(
→
∂ − ie

→
A

)
ψ



The covariant derivative for the new field is then,

→
Dψ′ =

(
→
∂ − ie

→
A
′)
ψ′ = e−ieα[

→
∂ − ie

→
∇α− ie

(
→
A −

→
∇α
)

]ψ

= e−ieα
(
→
Dψ

)

So the covariant derivative
→
Dψ transforms by a phase in the same way as the field ψ.In other words, the

covariant derivative
→
D =

(
→
∂ − ie

→
A

)
does not change the transformation property of the object it acts on.

It is then easy to see that
→
D
2

ψ′ = e−ieα
(
→
D
2

ψ

)
For the time derivative, we have

D0ψ = (∂0 + ieA0)ψ

and
D0ψ

′ = e−ieα (∂0 + ie∂0α− ieA0 − ie∂0α)ψ = e−ieαD0ψ

With this phase transformation, the Schrodinger equation

[− 1

2m

(
→
∇− ie

→
A
′)2

+ eA′0]ψ
′ = i

∂ψ′

∂t

becomes

e−ieα[− 1

2m

(
→
∇− ie

→
A

)2
+ eA0]ψ = e−ieαi

∂ψ

∂t

After cancelling out the phase e−ieα, we get back the original Schrodinger equation. The phase transfor-
mation of the wave function is a symmetry transformation and is a local symmetry because the phase is a

funciton of space-time coordinates, α = α
(→
x, t
)
. The phase transformation in usually referred to as U(1)

transformation and we call the elecromagnetic possesses U(1) local symmetry.

1.2 Non-Abelian symmetry-Yang Mills fields

In 1954, C. N.Yang and R. Mills generalized the Abelian U(1) local symmetry in the Maxwell theory
to the non-Abelian SU(2) local symmetry for the isospin and obtained a theory which is qualitatively

different from the Abelian case. To illustrate this we consider a SU(2) doublet ψ =

(
ψ1
ψ2

)
. Under SU(2)

transformation, we have

ψ(x)→ ψ′(x) = exp{− i~τ ·
~θ

2
}ψ(x)

where ~τ = (τ1, τ2, τ3) are Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
with

[
τi
2
,
τj
2

] = iεijk(
τk
2

)

Start from free Lagrangian
L0 = ψ̄(x)(iγµ∂µ −m)ψ



which is invariant under global SU (2) transformation where ~θ = (θ1, θ2, θ3) are independent of xµ.For local
symmetry transformation, write

ψ(x)→ ψ′(x) = U(θ)ψ(x) U(θ) = exp{− i~τ ·
~θ(x)

2
}

Again the derivative term
∂µψ(x)→ ∂µψ

′(x) = U∂µψ + (∂µU)ψ

does not have a simple transformation. Introduce gauge fields ~Aµ to form the covariant derivative,

Dµψ(x) ≡ (∂µ − ig
~τ · ~Aµ

2
)ψ

and require that it has the same transformation as ψ

[Dµψ]′ = U [Dµψ]

This determines the transformation property of the gauge field ~Aµ ,

(∂µ − ig
~τ · ~Aµ

′

2
)(Uψ) = U(∂µ − ig

~τ · ~Aµ
2

)ψ

and gives the transformation of gauge fields,

~τ · ~Aµ
′

2
= U(

~τ · ~Aµ
2

)U−1− i

g
(∂µU)U−1

We use covariant derivatives to construct field tensor. The term with 2 covariant derivatives can be written
as,

DµDνψ = (∂µ − ig
~τ · ~Aµ

2
)(∂ν − ig

~τ · ~Aν
2

)ψ = ∂µ∂νψ − ig(
~τ · ~Aµ

2
∂νψ +

~τ · ~Aν
2

∂µψ)

−ig∂µ(
~τ · ~Aν

2
)ψ + (−ig)2(

~τ · ~Aµ
2

)(
~τ · ~Aν

2
)ψ

Antisymmetrize this to get the field tensor,

(DµDν −DνDµ)ψ ≡ ig(
~τ · ~Fµν

2
)ψ

then
~τ · ~Fµν

2
=
~τ

2
· (∂µ ~Aν − ∂ν ~Aµ)− ig[

~τ · ~Aµ
2

,
~τ · ~Aν

2
]

Or in terms of components,
F iµν = ∂µA

i
ν − ∂νAiµ + gεijkAiµA

k
ν

The the term quadratic in A is new in Non-Abelian symmetry. Under the gauge transformation we have

~τ · ~Fµν
′
= U(~τ · ~Fµν)U−1

Infinitesmal transformation
Sometime we will use the gauge transformations in the infinitesmal form. Then we have for θ(x)� 1,

the following transformaitons,

Aiµ = Aµ + εijkθjAkµ −
1

g
∂µθ

i

F iµν = F iµν + εijkθjF kµν



The complete Lagragian for the non-Abelian local symmetry is then

L = −1

4
F iµνF

iµν + ψ̄(x)(iγµDµ −m)ψ

where

F iµν = ∂µA
i
ν − ∂νAiµ + gεijkAiµA

k
ν , Dµψ ≡ (∂µ − ig

~τ · ~Aµ
2

)ψ

This Lagragian is invariant under the local symmetry transformation

Ai/µ = Aiµ + εijkθjAkµ −
1

g
∂µθ

i, ψ(x)→ ψ′(x) = exp{− i~τ ·
~θ

2
}ψ(x) (2)

Remarks:

(a) Again AaµA
aµ is not gauge invariant and gauge boson are massless which lead to long range force.

This is phenomenologically not viable because, there are no other long-range forces besides QED.

(b) Unlike photon which does not carry electric charge, the gauge boson here Aaµ carries the symmetry
charge, the SU(2) charge.

(c) The quadratic term in field tensor F aµν ∼ ∂A − ∂A + gAA is present only in the non-Abelian
symmetry. This feature has led to interesting property,.e.g. asymptotic freedom.

2 Appendix 2 Non-relativistic Field Theory

We now discuss the quantum field theory for non-relativistic system. Conceptually they are similar to the
relativistic case. But the physical interpretation is somewhat different as we will see.

We first consider the simple case of 1-dimensional Schrodinger equation given by[
− ~

2

2m

∂2

∂x2
+ V (x)

]
ψ (x, t) = i~

∂ψ

∂t

The Lagrangian density in this case is

L = − ~
2

2m

∂ψ†

∂x

∂ψ

∂x
+ ψ†V (x)ψ + i~ψ†∂ψ

∂t

We now verify that this does give Schrodinger equation,

∂L
∂ψ†

= i~
∂ψ

∂t
− V (x)ψ,

∂L
∂ (∂0ψ†)

= 0,

∂L
∂ (∂xψ†)

= − ~
2

2m

∂ψ

∂x
,

Euler Lagrange equation of motion

∂x
∂L

∂ (∂xψ†)
+ ∂0

∂L
∂ (∂0ψ†)

=
∂L
∂ψ†

,

gives

i~
∂ψ

∂t
− V (x)ψ = − ~

2

2m

∂2ψ

∂x2

This is the Schrodinger equation.



From the Lagrangain density we get Conjugate momenta

π (x, t) =
∂L

∂ (∂0ψ)
= iψ†

and Hamiltonian density

H = π∂0ψ − L = i~ψ†∂ψ
∂t
− [i~ψ†∂ψ

∂t
− ~2

2m

∂ψ†

∂x

∂ψ

∂x
+ ψ†V (x)ψ]

=
~2

2m

∂ψ†

∂x

∂ψ

∂x
+ ψ†V (x)ψ

For the quantization we impose the commutation relations[
ψ (x, t) , π

(
x′, t

)]
= iδ

(
x− x′

)
, =⇒

[
ψ (x, t) , ψ† (x, t)

]
= δ

(
x− x′

)
Suppose φn are the normalized eigenstates of H for a given V (x) ,

[− ~
2

2m

∂2

∂x2
+ V (x)]φn = Enφn

and ∫
dxφ∗n (x)φm (x) = δnm

Here En, n = 0, 1, 2, · · · are the energies for the eigenstates φ0, φ1, φ2, · · · .
Mode expansion
We now expand the field operator in terms of these eigenfuntions to introduce the creation and anni-

hilation operators,

ψ (x, t) =
∑
n

anφn (x) e−iEnt, =⇒ ψ (x, t) =
∑
n

a†nφ
∗
n (x) eiEnt

where an and a
†
n are operators. We can invert these relations to get

an =

∫
eiEntφ∗n (x)ψ (x, t) , a†n =

∫
e−iEntφm (x)ψ† (x, t)

Note that an and a
†
n are time independent. We can compute their commutation relation,[
an, a

†
m

]
= eiEnte−iEmt

∫
dxdx′

[
ψ (x, t) , ψ† (x, t)

]
φ∗n (x)φ∗m (x)

= eiEnte−iEmt
∫
dxdx′δ

(
x− x′

)
φ∗n (x)φ∗m (x) = δnm

Similarly,
[an, am] = 0

We can write the Hamiltonian as

H =

∫ [
~2

2m

∂ψ†

∂x

∂ψ

∂x
+ ψ†V (x)ψ

]
dx =

∑
n,m

[
~2

2m
∂xφ

∗
n∂xφma

†
nam + V (x)φ∗nφma

†
nam

=
∑
n,m

∫
dx[φ∗n

(
− 1

2m
∂2x + V (x)

)
φma

†
nam =

∑
n,m

∫
dx[φ∗nEmφma

†
nam]

Or
H =

∑
n

Ena
†
nan



We see that the Hamiltonian is made out many quanta each with energy En.. Eigenstates of H are

|0〉 , a†n |0〉 , a†na
†
m |0〉 , · · ·

where
an |0〉 = 0, for all n

Eigenvalues are
E (n1, n2, · · · ) =

∑
k

Eknk, nk,# of particles in level n

We see that the Hamiltonian is made out many quanta each with energy En. and an. Even though this
describes a system with many particles each can occupy an energy level n, there is no interaction among
different particles due to the feature that the Lagrangian is quadratic in the field operator ψ, just like
the free fields int relativistic theory. The only interaction is the interaction of each particle with fixed

potentials. For example if V (x) =
1

2
mω2x is that of a simple harmonic oscillator, then this Hamiltonian

describes many particles each interacts with the Hamonic oscillator potential but no interactions among
different particles.

It is easy to see that the formalism can be generalized to particles moving in 3-dimensions. One of

the important examples is that of the Coulomb potential V (r) = − Ze2

4πε0r
and there are many electrons

moving this potential due to the nucleus and there is no interaction between electrons.
It is clear that to have interactions between particles we need to introduce in the Lagrangian terms

higher than the quadratic in the fields. For example,∫
dxLint =

∫
d3xd3y ψ† (x)ψ† (y)V (x− y)ψ (x)ψ (y)

which describes 2 particles interacting through a translaitonal invariant potential V (x− y) . Note that this
form conserves the particle number which is an important feature of non-relativistic system. This form
will be used later in the discussion of theory for the superfluid.

Summary
Canonical quantization is carried out using the Lagrangian formalism for the scalar, fermion, and

electromagnetic fields. The particle interpretation of these fields follows from the structure of the energy
and momentum operators. For the fermion anti-commutator quatization is used instead of commutator
because of the Fermi-Dirac statistics. The normal ordering is introduced to remove the infinite constant
in the vacuum energy. The cases with symmetry are discussed in the context of Noether’s theorem. The
quantization of the electromagnetic field is performed in the radiation gauge which picks out the transverse
polarization of the photon field. In the appendix 1, the quantization of simple harmonic oscillator, which
forms the basis of the field theory framework is reviewed. In the appendix 2, the quantization of the
non-relativistic field theory is briefly discussed.


