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Klein Gordon Equation
Classically,

E =
!
p
2

2m
+ V (~r )

Quantization : E ! i ∂
∂t ,

!
p ! �i

!
r and act on ψ

i
∂ψ

∂t
= [� 1

2m
r2 + V (~r )]ψ Schrodinger equation

x and time t are not on equal footing.
For relativistic case, use

E 2 = ~p2 +m2, =) (�r2 +m2)ψ = �∂20ψ

Or
(�+m2)ψ = 0, where � = ∂20 �r2 = ∂µ∂µ = ∂2

This is known as Klein-Gordon equation.
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Probablity interpretation
Klein-Gordon equation

(∂20 �r2 +m2)ψ = 0
complex conjugate,

(∂20 �r2 +m2)ψ� = 0
gives the continuity equation,

∂ρ

∂t
+
!
r �

!
j = 0

where

ρ = i (ψ∂0ψ� � ψ∂0ψ�), ~j = i (ψ
!
rψ� � ψ

!
�rψ)

De�ne
P =

Z
d 3x ρ (x )

Then
dP
dt

=
Z
V

∂ρ

∂t
d 3x = �

Z
V

!
r �

!
j d 3x = �

I
S

!
j �

!
ds = 0 if

!
j = 0, on S

P is conserved, probability ? But P is not positive, e.g.

if ψ = e iEtφ (x ) , then ρ = �2E jφ (x )j2 � 0

if we take ρ = ψψ� then it is not conserved,

d
dt

Z
ψψ�d 3x 6= 0
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Solutions to Klein-Gordon Equation

(�+m2)ψ(x ) = (�r2 + ∂20 +m
2)ψ(x ) = 0

plain wave solution,

φ(x ) = e�ipx if p20 � P 2 �m2 = 0 or p0 = �
p
~p2 +m2

1 Positive energy solution: P0 = ωp =
p
~p2 +m2, ~p arbitrary

φ(+)(x ) = exp
�
�iωp t + i

!
p �!x

�
= e�ikx

2 Negative energy solution: P0 = �ωp = �
p
~p2 +m2

φ(�)(x ) = exp
�
iωp t � i

!
p �!x

�
= e ikx

general solution is ,

φ(x ) =
Z d 3kp

(2π)32ωk
[a(k )e�ikx + a(k )+e ikx ] , kx = ωk t �~k �~x
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Orthogonality relation
For any 2 solutions φ1, φ2 of Klein-Gordon equation,

(∂20 �r2 +m2)φ1 = 0

and
(∂20 �r2 +m2)φ�2 = 0

we get Z
d 3x

��
φ�2∂20φ1 � φ1∂20φ�2

�
�
�
φ�2r2φ1 � φ1r2φ�2

�	
= 0

Or Z
d 3x

�
∂0 [φ

�
2∂0φ1 � φ1∂0φ�2 ]�

!
r �

�
φ�2
!
rφ1 � φ1

!
rφ�2

��
= 0

Use Gauss�theorem and dropping the surface terms at spatial in�nity,

d
dt

Z
d 3x [φ�2∂0φ1 � φ1∂0φ�2 ] = 0

So we de�ne "scalar product" as

hφ2 jφ1i =
Z
d 3x [φ�2∂0φ1 � φ1∂0φ�2 ]
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It is straightforward to derive the orthogonality relations as

D
φ
(+)
p 0 jφ

(+)
p

E
= δ3

�
p � p 0

�
D

φ
(�)
p 0 jφ

(�)
p

E
= �δ3

�
p � p 0

�
D

φ
(+)
p 0 jφ

(�)
p

E
= 0
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Dirac Equation
Dirac(1928) wants �rst order derivative in t and in x , y , z . Ansatz

E = α1p1 + α2p2 + α3p3 + βm =~α �~p + βm (1)

where αi , β are matrices. Then

E 2 =
1
2
(αi αj + αjαi )pipj + β2p2 + (αi β+ βαi )m

To get energy momentum relation, need

αi αj + αjαi = 2δij (2)

αi β+ βαi = 0 (3)

β2 = 1 (4)

From Eq( 2) we get
α2i = 1 (5)

Togather with Eq(4) αi , β all have eigenvalues �1. s

α1α2 = �α2α1 =) α2 = �α1α2α1
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Taking the trace
Trα2 = �Tr (α1α2α1) = �Tr

�
α2α21

�
= �Tr (α2)

Thus
Tr (αi ) = 0 (6)

Similarly,
Tr (β) = 0

αi , β even dimension. Pauli matrices σ1, σ2, σ3 ,are all traceless and anti-commuting. But need 4
such matrices.=) αi , β, 4� 4 matrices. Bjoken and Drell representation,

αi =

�
0 σi
σi 0

�
, β =

�
1 0
0 �1

�

Dirac equation ; E ! i
∂

∂t
, ~p ! �i

!
r

(�i~α � r+ βm)ψ = i
∂ψ

∂t

For convenience, de�ne a new set of matrices

γ0 = β, γi = βαi
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and in Bjorken and Drell notation,

γ0 =

�
1 0
0 �1

�
γi =

�
0 σi
�σi 0

�
(7)

Dirac equation

(�iγi ∂i � iγ0∂0 +m)ψ = 0, or (�iγµ∂µ +m)ψ = 0

Note that the anti-commutations are

fγµ,γνg = 2gµν
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Probability interpretation
From Dirac equation

�i ∂ψ†

∂t
= f�i~α �

!
r+ βm)ψg†

and

i (
∂ψ†

∂t
ψ+ ψ† ∂ψ

∂t
) = ψ†(�i~α �

!
r+ βm)ψ� f(�i~α �

!
r+ βm)ψg†ψ

Integrate over space,

i
d
dt

Z
d 3x (ψ†ψ) = �i

Z !
r �

�
ψ†~αψ

�
d 3x = 0

The probability
R
d 3x (ψ†ψ) is conserved and positive.
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Solution to Dirac equation
The Dirac equation is,

(iγµ∂µ �m)ψ = 0

solution in the plane wave,
ψ(x ) = e�ip�xω (p)

Then
( /p �m)ω (p) = 0 where /p = γµpµ = γ0p0 �

!
γ �!p

and �
p0 �

!
α �!p � βm

�
ω (p) = 0, where

!
α = γ0

!
γ , β = γ0

rewrite this in terms of Hamiltonian

Hω (p) = p0ω (p) , with H =
!
α �!p + βm

This is an eigenvalue equation. Eigenvectors for di¤erent eigenvalues are orthogonal to each
other,

ω(i )† (p)ω(j) (p) = δij , where Hω(i ) (p) = p(i )0 ω(i ) (p)

To �nd the eigenvalues and eigen vectors, we write

H =
!
α �!p + βm =

�
m ~σ �~p
~σ �~p �m

�
, ω (p) =

�
u
l

�
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where u(upper components) and l (lower componets) are 2 components column vectors. Then
we have �

m ~σ �~p
~σ �~p �m

��
u
l

�
= p0

�
u
l

�
Or �

(p0 �m)u � (~σ �~p)l = 0
�(~σ �~p)u + (p0 +m)l = 0 (8)

These are homogeneous linear equations. Non-trivial solution exists if���� p0 �m �~σ �~p
�~σ �~p (p0 +m)

���� = 0
This condition gives

p20 = ~p
2 +m2 or p0 = �

p
~p2 +m2
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1 Positive energy solution p0 = E =
p
~p2 +m2 ,

Substitute this into Eqs(??),

l =
~σ �~p
E +m

u

Write the solution in the form,

ω(s) (p) = N
�

1
~σ�~p
E+m

�
χs , s = 1, 2 χ1 =

�
1
0

�
, χ1 =

�
0
1

�

Here N is a normalization constant. The solution in coordinate space is

ψ = e�ipxω(s) (p) = e�iEte i
!
p �!x

�
1
~σ�~p
E+m

�
χs

In the non-relativistic limit j~pj � E , lower componet much smaller than the upper
component.

2 Negative energy solution p0 = �E = �
p
~p2 +m2 ,
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Similarly, the solution can be written as,

u =
� (~σ �~p)
E +m

l

We write the solution as,

ω(3) (p) = N
� �~σ�~p

E+m
1

��
1
0

�
, ω(4) (p) = N

� �~σ�~p
E+m
1

��
0
1

�

and in the coordinate space we get

ψ = e iEte i
!
p �!x N

� �~σ�~p
E+m
1

�
χs

Orthogonallity of di¤erent eigenvectors then implies that

ω(3) (p)† ω(1) (p) = N 2χ†
1

�
�~σ�~p
E+m 1

�� 1
~σ�~p
E+m

�
χs = 0

The standard notation for these 4-component column vector, spinors are,

u(p.s) = ω(s) (p) = N
�

1
~σ�~p
E+m

�
χs , s = 1, 2
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v (p, s) = N
�

~σ�~p
E+m
1

�
χs N =

p
E +m

Note that v � spinor is de�ned with ~p reversed and the plane wave factor becomes

e iEte�i
!
p �!x = e ipx .

The orthogonality for these spinors are

u†(p.s 0)v (�p, s) = 0

In the expansion of general solution to the Dirac equation, we write

ψ
�!
x , t

�
= ∑

s

Z d 3pq
(2π)3 2Ep

h
b (p, s) u (p, s) e�ip�x + d † (p, s) υ (p, s) e ip�x

i

To solve for b (p, s) ,we multiply this by u† (p 0, s 0) e�p
0 �x and integrate over x ,

Z
u† �p 0, s 0� e�p 0 �xψ

�!
x , t

�
d 3x = ∑

s

Z d 3pq
(2π)3 2Ep

�
b (p, s) u† (p 0, s 0) u (p, s) δ3 (p � p 0)
+d † (p, s) u† (p 0, s 0) υ (p, s) δ3 (p + p 0)

�

The last term vanishes because, u† (p 0, s 0) υ (p, s) = u† (�p, s) υ (p, s) = 0 and we get

b (p, s) =
Z d 3xe ip�xq

(2π)3 2Ep
u† (p, s)ψ

�!
x , t

�
.
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Dirac conjugate
Dirac equation in momentum space

( /p �m)ψ(p) = 0

is not hermitian. In the Hermitian conjugate

ψ†(p)( /p† �m) = 0

γ0µs are not hermitian,

γ†
0 = γ0 γ†

i = �γi

But we can write
γ†

µ = γ0γµγ0

Then
ψ†(p)(γ0γµγ0p

µ �m) = 0 or ψ†(p)γ0(γµp
µ �m) = 0

Or
ψ̄( /p �m) = 0 where ψ̄ = ψ†γ0 Dirac conjugate
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Dirac equation under Lorentz transformation
How Dirac equation

(iγµ∂µ �m)ψ(x ) = 0

behaves under Lorentz transformation?

xµ ! x
0µ = Λµ

νx
ν

In the new coordinate system, Dirac equation is

(iγµ∂
0
µ �m)ψ

0
(x

0
) = 0 (9)

Assume
ψ
0
(x

0
) = Sψ(x )

Invert the Lorentz transformation

xγ = Λγ
µx

0µ =) ∂

∂x 0µ
=

∂

∂xγ

∂xγ

∂x 0µ
= Λγ

µ
∂

∂xγ

Then Eq(9) becomes

(iγµΛα
µ∂α �m)Sψ(x ) = 0 or (i (S�1γµS )Λα

µ∂α �m)ψ(x ) = 0
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equivalent to the original Dirac equation, if

(S�1γµS )Λα
µ = γα or (S�1γµS ) = Λµ

α γα (10)

in�nitesimal transformation

Λµ
ν = g

µ
ν + ε

µ
ν +O (ε

2) with
��εµ

ν

�� << 1
Pseudo-othogonality implies

gµν(g
µ
α + ε

µ
α )(g

ν
β + εν

β) = gαβ

Or
εαβ + εβα = 0, =) εαβ antisymmetric

Write

S = 1� i
4

σµνεµν +O (ε2)thenS�1 = 1+
i
4

σµνεµν

σµν : 4� 4 matrices. Then Eq(10) yields,

(1+
i
4

σαβεαβ)γµ(1� i
4

σαβεαβ) = (g µ
α + ε

µ
α )γ

α

Or

εαβ i
4
[σαβ,γ

µ] = ε
µ
α γα =

1
2

εαβ(g µ
α γβ � g

µ
β γα)
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coe¢ cient of εαβ

[σαβ,γµ] = 2i (gβµγα � gαµγβ) (11)

Solution

σαβ =
i
2
[γα,γβ]

satisfy Eq(11). To see this, we need to use the identiy,

[AB , C ] = AfB , C g � fA, C gB

Then

[σαβ,γµ] =
i
2
[
�

γαγβ � γβγα

�
,γµ] =

i
2

�
γαfγβ, γµg � fγα,γµgγβ � (α $ β)

�
=

i
2

�
2γαgβµ � 2gαµγβ

�
� 2 = 2i (gβµγα � gαµγβ)

Finite Lorentz transformation,

ψ
0
(x

0
) = Sψ(x ), with S = exp[� i

4
σµνεµν] (12)

σ†
µν = γ0σµνγ0 and S † = γ0S�1γ0

S is not unitary. From ψ
0
(x

0
) = Sψ we get

ψ†0 (x
0
) = ψ†S † = ψ†γ0S�1γ0, or ψ̄0(x

0
) =

_
ψ(x )S�1

_
ψ Dirac conjugate
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Fermion bilinears
The fermion bi-linears ψ̄α(x )ψβ (x ) has simple transformation. For example,

ψ̄0(x 0)ψ0(x 0) = ψ̄(x )S�1Sψ(x ) = ψ̄(x )ψ (x )

ψ̄(x )ψ (x ) is Lorentz invariant. Similarly, .

ψ̄γµψ 4-vector
ψ̄γµγ5ψ axial vector
ψ̄σµνψ 2nd rank antisymmetric ensor
ψ̄γ5ψ pseudo scalar

where γ5 = iγ
0γ1γ2γ3

Hole Theory ( Dirac 1930 )
Dirac proposed

vaccum= (E < 0 states all �lled and E > 0 states are empty )

Pauli exclusion principle makes vacuum stable.
In this picture hole in the negative sea,

absence of an electron - je j and - jE j � presence of particle jE j and + je j

new particle is called "positron" also called anti � particle . This correspondence of particle and
anti-particle is called charge conjugation.
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Lorentz group
In Dirac equation, it is not clear what is the origin of Dirac γ matrices. It turns out that they
are related to representations of Lorentz group. The Lorentz group is a collection of linear
transformations of space-time coordinates

xµ ! x 0µ = Λµ
νx

ν

which leaves the proper time

τ2 = (x o )2 � (!x )2 = xµx νgµν = x 2

invariant. This requires Λµν satis�es the pseudo-orthogonality relation

Λµ
α Λν

βgµν = gαβ

Generators
For in�nitesmal transformation, write

Λµ
α = g

µ
α + ε

µ
α with jεµ

α j � 1

As before, the pseudo-orthogonality relation implies, εαβ = �εβα. Consider f (xµ), an arbitrary
function of xµ. Under in�nitesimal Lorentz transformation, the change in f is

f (xµ) ! f (x 0µ) = f (xµ + ε
µ
αx

α) � f (xµ) + εαβx
β∂αf + � � �

= f (xµ) +
1
2

εαβ[x
β∂α � x α∂β]f (x ) + � � �

(Institute) Note 2 21 / 30



Introduce operator Mµν to represent this change,

f (x 0) = f (x )� i
2

εαβM
αβf (x ) + � � �

then
M αβ = �i (x α∂β � x β∂α) (13)

generators Mµν are called the generators of Lorentz group operating on functions of
coordinates. Note that for α, β = 1, 2, 3 these are just the angular momentum operator.
Using the generators given in Eq(13) we can work out commutators of these generators,

[Mαβ,Mγδ] = �ifgβγMαδ � gαγMβδ � gβδMαγ + gαδMβγg

De�ne
Mij = εijk Jk , Moi = Ki

where J 0k s correspond to the usual rotations and Ki the Lorentz boost operators. We can solve
for Ji to get

Ji =
1
2

εijkMjk

We can compute the commutator of J 0i s ,

[Ji , Jj ] =
�
1
2

�2
εikl εjmn [Mkl ,Mmn ] = (�i ) (

1
2
)2εikl εjmn(glmMkn � gkmMln � glnMkm + gknMlm )
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= (
1
2
)2 (�i ) [�εikl εjlnMkn + εikl εjknMln + εikl εjmlMkm � εikl εjmkMlm ]

Using identity
εabc εalm = (δbl δcm � δbmδcl )

we get
[Ji , Jj ] = iεijk Jk (14)

Thus we can identify Ji as the angular momentum operator.
Similarly, we can derive

[Ki ,Kj ] = �iεijk Jk , [Ji ,Kj ] = iεijkKk (15)

Eqs(14,15) are called the Lorentz algebra.
To simplify the Lorentz algebra, we de�ne the combinations

Ai =
1
2
(Ji + iKi ) ,Bi =

1
2
(Ji � iKi )

Then we get following commutation relations,

[Ai ,Aj ] = iεijkAk , [Bi ,Bj ] = iεijkBk , [Ai ,Bj ] = 0
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For example,

[A1,A2 ] =
1
4
[J1 + iK1, J2 + iK2 ] =

1
4

�
[J1, J2 ] + i [J1,K2 ] + i [K1, J2 ] + i 2 [K1,K2 ]

�
=

1
4

�
iJ3 + i 2K3 + i 2K3 � i 3J3

�
=
1
2
i (J3 + iK3) = iA3

Thus algebra of Lorentz generators factorizes into 2 independent SU (2) algebra. The
representations are just the tensor products of the representation of SU (2) algebra. Thus we
label the irreducible representation by (j1, j2) which transforms as (2j1 + 1)-dim representation
under Ai algebra and (2j2 + 1)-dim representation under Bi algebra.
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Simple representations

1 ( 12 , 0) representation χa
This 2-component object has the following properties,

Aiχa = (
σi
2
)abχb =) 1

2
(Ji + iKi )χa = (

σi
2
)abχb

Biχa = 0 =) 1
2
(Ji � iKi )χa = 0

Combining these realtions

~Jχ = (
~σ

2
)χ, ~Kχ = �i (~σ

2
)χ

2 (0, 12 ) representation ηa
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Similarly, we can get

Ai ηa = 0 ) 1
2
(Ji + iKi )ηa = 0

Bi ηa = (
σi
2
)ab =) 1

2
(Ji � iKi )ηa = (

σi
2
)abηb

~Jη = (
~σ

2
)η, ~K η = i (

~σ

2
)η

If we de�ne a 4-component ψ by putting togather these 2 representations,

ψ =

�
χ
η

�
Then action of the Lorentz generators are

~Jψ =

�
~σ
2 0
0 ~σ

2

�
ψ, ~Kψ =

�
�i ~σ2 0
0 i ~σ2

�
ψ (16)

ψ are related to the 4-component Dirac �eld we studied before, but with di¤erent representation
for the γ matrices. This can be seen as follows.
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Consider Dirac matrices in the following form

γµ =

�
0 σµ
_
σ

µ
0

�
where σµ = (1,~σ) ,

_
σ

µ
= (1,�~σ)

More explicitly,

γo =

�
0 1
1 0

�
~γ =

�
0 ~σ
�~σ 0

�
It is straightforward to check that in this case.

γ5 = iγ
0γ1γ2γ3 =

�
1 0
0 �1

�

This means that in 4-component �eld ψ =

�
χ
η

�
, χ is right-handed and η is left-handed. In

this representation, it is easy to check that

σ0i = iγ0γ1 = i
�
0 1
1 0

��
0 σi

�σi 0

�
=

�
�iσi 0
0 iσi

�

σij = iγiγj = i
�

0 σi
�σi 0

��
0 σj
�σj 0

�
= εijk

�
σk 0
0 σk

�
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In the Lorentz transformation of Dirac �eld,

ψ0(x 0) = Sψ = expf� i
4

σµνεµνg = expf� i
4
(2σ0i ε

0i + σij ε
ij )g

Write ε0i = βi , εij = εijk θk

σij ε
ij = εijk θk εijl

�
σl 0
0 σl

�
= 2

�
~σ �~θ 0
0 ~σ �~θ

�

σ0 i ε0 i =
�
�i~σ �~β 0
0 i~σ �~β

�
)

� i
4
(2σ0i ε

0i + σij ε
ij ) =

�i
2

 
~σ �

!
θ � i~σ �~β 0

0 ~σ �
!
θ + i~σ �~β

!

More precisely,

ψ0(x 0) = Sψ = expf� i
4

σµνεµνgψ = exp

"
�i
2

 
~σ �

!
θ � i~σ �~β 0

0 ~σ �
!
θ + i~σ �~β

!#
ψ (17)
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If we write the Lorentz transformations in terms of generators,

L = exp(�iMµνεµν)

then in terms of the generators
!
J ,

!
K

L = exp
�
(�i )

�!
J �

!
θ +

!
K �

!
β

��

We then see from Eq(17) that for this ψ,
!
J ,

!
K are of the form,

!
J =

1
2

�
~σ 0
0 ~σ

�
,

!
K =

1
2

�
�i~σ 0
0 i~σ

�
These are the same as those in Eq(16).
Thus the wavefunction which satis�es Dirac equation is just the representation�
1
2
, 0
�
�
�
0,
1
2

�
under Lorentz group. Futhermore, the right-handed components transform as�

1
2
, 0
�
represenation while left-handed components transform as

�
0,
1
2

�
representation.
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Alternative choice is to use ψR and the complex conjugate ψ�R ( sometime dotted indice are used
for this basis) instead of ψR and ψL . Since

~JψR = (
~σ

2
)ψR ,

~KψR = �i (
~σ

2
)ψR

we get for the complex conjuate

~Jψ�R = (
~σ�

2
)ψ�R , ~Kψ�R = i (

~σ�

2
)ψ�R

It is probably more clearer to use some other notation for ψ�R ,

~Jχ = (
~σ�

2
)χ, ~Kχ = i (

~σ�

2
)χ

Then
!
Aχ =

1
2
(
!
J + i

!
K )χ = 0,

!
Bχ =

1
2
(
!
J � i

!
K )χ = (

~σ�

2
)χ

and indeed χ belongs to the irrep (0,
1
2
).
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