Quantum Field Theory, Note 2

Ling-Fong Li

Klein Gordon Equation

Classically,

$$
E=\frac{\vec{p}^{2}}{2 m}+V(\vec{r})
$$

Quantization: $E \rightarrow i \frac{\partial}{\partial t}, \vec{p} \rightarrow-i \vec{\nabla}$ and act on ψ

$$
i \frac{\partial \psi}{\partial t}=\left[-\frac{1}{2 m} \nabla^{2}+V(\vec{r})\right] \psi \quad \text { Schrodinger equation }
$$

x and time t are not on equal footing.
For relativistic case, use

$$
E^{2}=\vec{p}^{2}+m^{2}, \quad \Longrightarrow \quad\left(-\nabla^{2}+m^{2}\right) \psi=-\partial_{0}^{2} \psi
$$

Or

$$
\left(\square+m^{2}\right) \psi=0, \text { where } \square=\partial_{0}^{2}-\nabla^{2}=\partial^{\mu} \partial_{\mu}=\partial^{2}
$$

This is known as Klein-Gordon equation.

Probablity interpretation

Klein-Gordon equation

$$
\left(\partial_{0}^{2}-\nabla^{2}+m^{2}\right) \psi=0
$$

complex conjugate,

$$
\left(\partial_{0}^{2}-\nabla^{2}+m^{2}\right) \psi^{*}=0
$$

gives the continuity equation,

$$
\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{j}=0
$$

where

$$
\rho=i\left(\psi \partial_{0} \psi^{*}-\psi \partial_{0} \psi^{*}\right), \quad \vec{j}=i\left(\psi \vec{\nabla} \psi^{*}-\psi^{*} \vec{\nabla} \psi\right)
$$

Define

$$
P=\int d^{3} x \rho(x)
$$

Then

$$
\frac{d P}{d t}=\int_{V} \frac{\partial \rho}{\partial t} d^{3} x=-\int_{V} \vec{\nabla} \cdot \vec{j} d^{3} x=-\oint_{S} \vec{j} \cdot \overrightarrow{d s}=0 \quad \text { if } \vec{j}=0, \text { on } S
$$

P is conserved, probability ? But P is not positive, e.g.

$$
\text { if } \psi=e^{i E t} \phi(x), \quad \text { then } \quad \rho=-2 E|\phi(x)|^{2} \leq 0
$$

if we take $\rho=\psi \psi^{*}$ then it is not conserved,

$$
\frac{d}{d t} \int \psi \psi^{*} d^{3} x \neq 0
$$

Solutions to Klein-Gordon Equation

$$
\left(\square+m^{2}\right) \psi(x)=\left(-\nabla^{2}+\partial_{0}^{2}+m^{2}\right) \psi(x)=0
$$

plain wave solution,

$$
\phi(x)=e^{-i p x} \quad \text { if } \quad p_{0}^{2}-P^{2}-m^{2}=0 \quad \text { or } \quad p_{0}= \pm \sqrt{\vec{p}^{2}+m^{2}}
$$

(1) Positive energy solution: $P_{0}=\omega_{p}=\sqrt{\vec{p}^{2}+m^{2}}, \quad \vec{p}$ arbitrary

$$
\phi^{(+)}(x)=\exp \left(-i \omega_{p} t+i \vec{p} \cdot \vec{x}\right)=e^{-i k x}
$$

(2) Negative energy solution: $P_{0}=-\omega_{p}=-\sqrt{\vec{p}^{2}+m^{2}}$

$$
\phi^{(-)}(x)=\exp \left(i \omega_{p} t-i \vec{p} \cdot \vec{x}\right)=e^{i k x}
$$

general solution is,

$$
\phi(x)=\int \frac{d^{3} k}{\sqrt{(2 \pi)^{3} 2 \omega_{k}}}\left[a(k) e^{-i k x}+a(k)^{+} e^{i k x}\right] \quad, \quad k x=\omega_{k} t-\vec{k} \cdot \vec{x}
$$

Orthogonality relation

For any 2 solutions ϕ_{1}, ϕ_{2} of Klein-Gordon equation,

$$
\left(\partial_{0}^{2}-\nabla^{2}+m^{2}\right) \phi_{1}=0
$$

and

$$
\left(\partial_{0}^{2}-\nabla^{2}+m^{2}\right) \phi_{2}^{*}=0
$$

we get

$$
\int d^{3} x\left\{\left[\phi_{2}^{*} \partial_{0}^{2} \phi_{1}-\phi_{1} \partial_{0}^{2} \phi_{2}^{*}\right]-\left[\phi_{2}^{*} \nabla^{2} \phi_{1}-\phi_{1} \nabla^{2} \phi_{2}^{*}\right]\right\}=0
$$

Or

$$
\int d^{3} x\left\{\partial_{0}\left[\phi_{2}^{*} \partial_{0} \phi_{1}-\phi_{1} \partial_{0} \phi_{2}^{*}\right]-\vec{\nabla} \cdot\left[\phi_{2}^{*} \vec{\nabla} \phi_{1}-\phi_{1} \vec{\nabla} \phi_{2}^{*}\right]\right\}=0
$$

Use Gauss' theorem and dropping the surface terms at spatial infinity,

$$
\frac{d}{d t} \int d^{3} x\left[\phi_{2}^{*} \partial_{0} \phi_{1}-\phi_{1} \partial_{0} \phi_{2}^{*}\right]=0
$$

So we define "scalar product" as

$$
\left\langle\phi_{2} \mid \phi_{1}\right\rangle=\int d^{3} \times\left[\phi_{2}^{*} \partial_{0} \phi_{1}-\phi_{1} \partial_{0} \phi_{2}^{*}\right]
$$

It is straightforward to derive the orthogonality relations as

$$
\begin{gathered}
\left\langle\phi_{p^{\prime}}^{(+)} \mid \phi_{p}^{(+)}\right\rangle=\delta^{3}\left(p-p^{\prime}\right) \\
\left\langle\phi_{p^{\prime}}^{(-)} \mid \phi_{p}^{(-)}\right\rangle=-\delta^{3}\left(p-p^{\prime}\right) \\
\left\langle\phi_{p^{\prime}}^{(+)} \mid \phi_{p}^{(-)}\right\rangle=0
\end{gathered}
$$

Dirac Equation

$\overline{\operatorname{Dirac}(1928)}$ wants first order derivative in t and in x, y, z. Ansatz

$$
\begin{equation*}
E=\alpha_{1} p_{1}+\alpha_{2} p_{2}+\alpha_{3} p_{3}+\beta m=\vec{\alpha} \cdot \vec{p}+\beta m \tag{1}
\end{equation*}
$$

where α_{i}, β are matrices. Then

$$
E^{2}=\frac{1}{2}\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right) p_{i} p_{j}+\beta^{2} p^{2}+\left(\alpha_{i} \beta+\beta \alpha_{i}\right) m
$$

To get energy momentum relation, need

$$
\begin{align*}
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i} & =2 \delta_{i j} \tag{2}\\
\alpha_{i} \beta+\beta \alpha_{i} & =0 \tag{3}\\
\beta^{2} & =1 \tag{4}
\end{align*}
$$

From $\mathrm{Eq}(2)$ we get

$$
\begin{equation*}
\alpha_{i}^{2}=1 \tag{5}
\end{equation*}
$$

Togather with $\mathrm{Eq}(4) \alpha_{i}, \beta$ all have eigenvalues ± 1. s

$$
\alpha_{1} \alpha_{2}=-\alpha_{2} \alpha_{1} \Longrightarrow \alpha_{2}=-\alpha_{1} \alpha_{2} \alpha_{1}
$$

Taking the trace

$$
\operatorname{Tr} \alpha_{2}=-\operatorname{Tr}\left(\alpha_{1} \alpha_{2} \alpha_{1}\right)=-\operatorname{Tr}\left(\alpha_{2} \alpha_{1}^{2}\right)=-\operatorname{Tr}\left(\alpha_{2}\right)
$$

Thus

$$
\begin{equation*}
\operatorname{Tr}\left(\alpha_{i}\right)=0 \tag{6}
\end{equation*}
$$

Similarly,

$$
\operatorname{Tr}(\beta)=0
$$

α_{i}, β even dimension. Pauli matrices $\sigma_{1}, \sigma_{2}, \sigma_{3}$, are all traceless and anti-commuting. But need 4 such matrices. $\Longrightarrow \alpha_{i}, \beta, 4 \times 4$ matrices. Bjoken and Drell representation,

$$
\alpha_{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
\sigma_{i} & 0
\end{array}\right), \quad \beta=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Dirac equation $; E \rightarrow i \frac{\partial}{\partial t}, \vec{p} \rightarrow-i \vec{\nabla}$

$$
(-i \vec{\alpha} \cdot \nabla+\beta m) \psi=i \frac{\partial \psi}{\partial t}
$$

For convenience, define a new set of matrices

$$
\gamma^{0}=\beta, \quad \gamma^{i}=\beta \alpha_{i}
$$

and in Bjorken and Drell notation,

$$
\gamma^{0}=\left(\begin{array}{cc}
1 & 0 \tag{7}\\
0 & -1
\end{array}\right) \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)
$$

Dirac equation

$$
\left(-i \gamma^{i} \partial_{i}-i \gamma^{0} \partial_{0}+m\right) \psi=0, \quad \text { or } \quad\left(-i \gamma^{\mu} \partial_{\mu}+m\right) \psi=0
$$

Note that the anti-commutations are

$$
\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 g_{\mu v}
$$

Probability interpretation

From Dirac equation

$$
\left.-i \frac{\partial \psi^{\dagger}}{\partial t}=\{-i \vec{\alpha} \cdot \vec{\nabla}+\beta m) \psi\right\}^{+}
$$

and

$$
i\left(\frac{\partial \psi^{\dagger}}{\partial t} \psi+\psi^{\dagger} \frac{\partial \psi}{\partial t}\right)=\psi^{\dagger}(-i \vec{\alpha} \cdot \vec{\nabla}+\beta m) \psi-\{(-i \vec{\alpha} \cdot \vec{\nabla}+\beta m) \psi\}^{\dagger} \psi
$$

Integrate over space,

$$
i \frac{d}{d t} \int d^{3} x\left(\psi^{\dagger} \psi\right)=-i \int \vec{\nabla} \cdot\left(\psi^{\dagger} \vec{\alpha} \psi\right) d^{3} x=0
$$

The probability $\int d^{3} x\left(\psi^{\dagger} \psi\right)$ is conserved and positive.

Solution to Dirac equation

The Dirac equation is,

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

solution in the plane wave,

$$
\psi(x)=e^{-i p \cdot x} \omega(p)
$$

Then

$$
(\not p-m) \omega(p)=0 \quad \text { where } \quad \not p=\gamma^{\mu} p_{\mu}=\gamma^{0} p_{0}-\vec{\gamma} \cdot \vec{p}
$$

and

$$
\left(p_{0}-\vec{\alpha} \cdot \vec{p}-\beta m\right) \omega(p)=0, \quad \text { where } \quad \vec{\alpha}=\gamma_{0} \vec{\gamma}, \quad \beta=\gamma_{0}
$$

rewrite this in terms of Hamiltonian

$$
H \omega(p)=p_{0} \omega(p), \quad \text { with } \quad H=\vec{\alpha} \cdot \vec{p}+\beta m
$$

This is an eigenvalue equation. Eigenvectors for different eigenvalues are orthogonal to each other,

$$
\omega^{(i)}+(p) \omega^{(j)}(p)=\delta_{i j}, \quad \text { where } \quad H \omega^{(i)}(p)=p_{0}^{(i)} \omega^{(i)}(p)
$$

To find the eigenvalues and eigen vectors, we write

$$
H=\vec{\alpha} \cdot \vec{p}+\beta m=\left(\begin{array}{cc}
m & \vec{\sigma} \cdot \vec{p} \\
\vec{\sigma} \cdot \vec{p} & -m
\end{array}\right), \quad \omega(p)=\binom{u}{l}
$$

where u (upper components) and I (lower componets) are 2 components column vectors. Then we have

$$
\left(\begin{array}{cc}
m & \vec{\sigma} \cdot \vec{p} \\
\vec{\sigma} \cdot \vec{p} & -m
\end{array}\right)\binom{u}{l}=p_{0}\binom{u}{l}
$$

Or

$$
\left\{\begin{array}{c}
\left(p_{0}-m\right) u-(\vec{\sigma} \cdot \vec{p}) I=0 \tag{8}\\
-(\vec{\sigma} \cdot \vec{p}) u+\left(p_{0}+m\right) I=0
\end{array}\right.
$$

These are homogeneous linear equations. Non-trivial solution exists if

$$
\left.\begin{array}{cc}
p_{0}-m & -\vec{\sigma} \cdot \vec{p} \\
-\vec{\sigma} \cdot \vec{p} & \left(p_{0}+m\right)
\end{array} \right\rvert\,=0
$$

This condition gives

$$
p_{0}^{2}=\vec{p}^{2}+m^{2} \quad \text { or } \quad p_{0}= \pm \sqrt{\vec{p}^{2}+m^{2}}
$$

(1) Positive energy solution $p_{0}=E=\sqrt{\vec{p}^{2}+m^{2}}$, Substitute this into Eqs(??),

$$
I=\frac{\vec{\sigma} \cdot \vec{p}}{E+m} u
$$

Write the solution in the form,

$$
\omega^{(s)}(p)=N\left(\begin{array}{c}
1 \\
\overrightarrow{\frac{\rightharpoonup}{\cdot} \cdot \vec{p}} \\
E+m
\end{array}\right) \chi_{s}, \quad s=1,2 \quad \chi_{1}=\binom{1}{0}, \quad \chi_{1}=\binom{0}{1}
$$

Here N is a normalization constant. The solution in coordinate space is

$$
\psi=e^{-i p x} \omega^{(s)}(p)=e^{-i E t} e^{i \vec{p} \cdot \vec{x}}\binom{1}{\frac{\vec{\sigma} \cdot \vec{p}}{E+m}} \chi_{s}
$$

In the non-relativistic limit $|\vec{p}| \ll E$, lower componet much smaller than the upper component.
(2) Negative energy solution $p_{0}=-E=-\sqrt{\vec{p}^{2}+m^{2}}$,

Similarly, the solution can be written as,

$$
u=\frac{-(\vec{\sigma} \cdot \vec{p})}{E+m} l
$$

We write the solution as,

$$
\omega^{(3)}(p)=N\binom{\frac{-\vec{\sigma} \cdot \vec{p}}{E+m}}{1}\binom{1}{0}, \quad \omega^{(4)}(p)=N\binom{\frac{-\vec{\sigma} \cdot \vec{p}}{E+m}}{1}\binom{0}{1}
$$

and in the coordinate space we get

$$
\psi=e^{i E t} e^{i \vec{p} \cdot \vec{x}} N\binom{\frac{-\vec{\sigma} \cdot \vec{p}}{E+m}}{1} \chi_{s}
$$

Orthogonallity of different eigenvectors then implies that

$$
\omega^{(3)}(p)^{\dagger} \omega^{(1)}(p)=N^{2} \chi_{1}^{\dagger}\left(\begin{array}{cc}
\frac{-\vec{\sigma} \cdot \vec{p}}{E+m} & 1
\end{array}\right)\binom{1}{\frac{\vec{\sigma} \cdot \vec{p}}{E+m}} \chi_{s}=0
$$

The standard notation for these 4-component column vector, spinors are,

$$
u(p . s)=\omega^{(s)}(p)=N\binom{1}{\frac{\vec{\sigma} \cdot \vec{p}}{E+m}} \chi_{s}, \quad s=1,2
$$

$$
v(p, s)=N\binom{\frac{\vec{\sigma} \cdot \vec{p}}{E+m}}{1} \chi_{s} \quad N=\sqrt{E+m}
$$

Note that v-spinor is defined with \vec{p} reversed and the plane wave factor becomes $e^{i E t} e^{-i \vec{p} \cdot \vec{x}}=e^{i p x}$.
The orthogonality for these spinors are

$$
u^{\dagger}\left(p . s^{\prime}\right) v(-p, s)=0
$$

In the expansion of general solution to the Dirac equation, we write

$$
\psi(\vec{x}, t)=\sum_{s} \int \frac{d^{3} p}{\sqrt{(2 \pi)^{3} 2 E_{p}}}\left[b(p, s) u(p, s) e^{-i p \cdot x}+d^{\dagger}(p, s) v(p, s) e^{i p \cdot x}\right]
$$

To solve for $b(p, s)$, we multiply this by $u^{\dagger}\left(p^{\prime}, s^{\prime}\right) e^{-p^{\prime} \cdot x}$ and integrate over x,
$\int u^{\dagger}\left(p^{\prime}, s^{\prime}\right) e^{-p^{\prime} \cdot x} \psi(\vec{x}, t) d^{3} x=\sum_{s} \int \frac{d^{3} p}{\sqrt{(2 \pi)^{3} 2 E_{p}}}\left[\begin{array}{c}b(p, s) u^{\dagger}\left(p^{\prime}, s^{\prime}\right) u(p, s) \delta^{3}\left(p-p^{\prime}\right) \\ +d^{\dagger}(p, s) u^{\dagger}\left(p^{\prime}, s^{\prime}\right) v(p, s) \delta^{3}\left(p+p^{\prime}\right)\end{array}\right]$
The last term vanishes because, $u^{\dagger}\left(p^{\prime}, s^{\prime}\right) v(p, s)=u^{\dagger}(-p, s) v(p, s)=0$ and we get

$$
b(p, s)=\int \frac{d^{3} x e^{i p \cdot x}}{\sqrt{(2 \pi)^{3} 2 E_{p}}} u^{\dagger}(p, s) \psi(\vec{x}, t)
$$

Dirac conjugate

Dirac equation in momentum space

$$
(\not p-m) \psi(p)=0
$$

is not hermitian. In the Hermitian conjugate

$$
\psi^{\dagger}(p)\left(p^{\dagger}-m\right)=0
$$

$\gamma_{\mu}^{\prime} s$ are not hermitian,

$$
\gamma_{0}^{\dagger}=\gamma_{0} \quad \gamma_{i}^{\dagger}=-\gamma_{i}
$$

But we can write

$$
\gamma_{\mu}^{\dagger}=\gamma_{0} \gamma_{\mu} \gamma_{0}
$$

Then

$$
\psi^{\dagger}(p)\left(\gamma_{0} \gamma_{\mu} \gamma_{0} p^{\mu}-m\right)=0 \quad \text { or } \quad \psi^{\dagger}(p) \gamma_{0}\left(\gamma_{\mu} p^{\mu}-m\right)=0
$$

Or

$$
\bar{\psi}(\not p-m)=0 \quad \text { where } \quad \bar{\psi}=\psi^{\dagger} \gamma_{0} \quad \text { Dirac conjugate }
$$

Dirac equation under Lorentz transformation

How Dirac equation

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0
$$

behaves under Lorentz transformation?

$$
x^{\mu} \rightarrow x^{\prime \mu}=\Lambda_{v}^{\mu} x^{v}
$$

In the new coordinate system, Dirac equation is

$$
\begin{equation*}
\left(i \gamma^{\mu} \partial_{\mu}^{\prime}-m\right) \psi^{\prime}\left(x^{\prime}\right)=0 \tag{9}
\end{equation*}
$$

Assume

$$
\psi^{\prime}\left(x^{\prime}\right)=S \psi(x)
$$

Invert the Lorentz transformation

$$
x^{\gamma}=\Lambda_{\mu}^{\gamma} x^{\prime \mu} \quad \Longrightarrow \quad \frac{\partial}{\partial x^{\prime \mu}}=\frac{\partial}{\partial x^{\gamma}} \frac{\partial x^{\gamma}}{\partial x^{\prime \mu}}=\Lambda_{\mu}^{\gamma} \frac{\partial}{\partial x^{\gamma}}
$$

Then $\mathrm{Eq}(9)$ becomes

$$
\left(i \gamma^{\mu} \Lambda_{\mu}^{\alpha} \partial_{\alpha}-m\right) S \psi(x)=0 \quad \text { or } \quad\left(i\left(S^{-1} \gamma^{\mu} S\right) \Lambda_{\mu}^{\alpha} \partial_{\alpha}-m\right) \psi(x)=0
$$

equivalent to the original Dirac equation, if

$$
\begin{equation*}
\left(S^{-1} \gamma^{\mu} S\right) \Lambda_{\mu}^{\alpha}=\gamma^{\alpha} \quad \text { or } \quad\left(S^{-1} \gamma^{\mu} S\right)=\Lambda_{\alpha}^{\mu} \gamma^{\alpha} \tag{10}
\end{equation*}
$$

infinitesimal transformation

$$
\Lambda_{v}^{\mu}=g_{v}^{\mu}+\epsilon_{v}^{\mu}+O\left(\epsilon^{2}\right) \quad \text { with } \quad\left|\epsilon_{v}^{\mu}\right| \ll 1
$$

Pseudo-othogonality implies

$$
g_{\mu v}\left(g_{\alpha}^{\mu}+\epsilon_{\alpha}^{\mu}\right)\left(g_{\beta}^{v}+\epsilon_{\beta}^{v}\right)=g_{\alpha \beta}
$$

Or

$$
\epsilon_{\alpha \beta}+\epsilon_{\beta \alpha}=0, \quad \Longrightarrow \quad \epsilon_{\alpha \beta} \text { antisymmetric }
$$

Write

$$
S=1-\frac{i}{4} \sigma_{\mu \nu} \epsilon^{\mu \nu}+O\left(\epsilon^{2}\right) \text { then } S^{-1}=1+\frac{i}{4} \sigma_{\mu \nu} \epsilon^{\mu \nu}
$$

$\sigma_{\mu v}: 4 \times 4$ matrices. Then $\mathrm{Eq}(10)$ yields,

$$
\left(1+\frac{i}{4} \sigma_{\alpha \beta} \epsilon^{\alpha \beta}\right) \gamma^{\mu}\left(1-\frac{i}{4} \sigma_{\alpha \beta} \epsilon^{\alpha \beta}\right)=\left(g_{\alpha}^{\mu}+\epsilon_{\alpha}^{\mu}\right) \gamma^{\alpha}
$$

Or

$$
\epsilon^{\alpha \beta} \frac{i}{4}\left[\sigma_{\alpha \beta}, \gamma^{\mu}\right]=\epsilon_{\alpha}^{\mu} \gamma^{\alpha}=\frac{1}{2} \epsilon^{\alpha \beta}\left(g_{\alpha}^{\mu} \gamma_{\beta}-g_{\beta}^{\mu} \gamma_{\alpha}\right)
$$

coefficient of $\varepsilon^{\alpha \beta}$

$$
\begin{equation*}
\left[\sigma_{\alpha \beta}, \gamma_{\mu}\right]=2 i\left(g_{\beta \mu} \gamma_{\alpha}-g_{\alpha \mu} \gamma_{\beta}\right) \tag{11}
\end{equation*}
$$

Solution

$$
\sigma_{\alpha \beta}=\frac{i}{2}\left[\gamma_{\alpha}, \gamma_{\beta}\right]
$$

satisfy $\mathrm{Eq}(11)$. To see this, we need to use the identiy,

$$
[A B, C]=A\{B, C\}-\{A, C\} B
$$

Then

$$
\begin{aligned}
{\left[\sigma_{\alpha \beta}, \gamma_{\mu}\right] } & =\frac{i}{2}\left[\left(\gamma_{\alpha} \gamma_{\beta}-\gamma_{\beta} \gamma_{\alpha}\right), \gamma_{\mu}\right]=\frac{i}{2}\left(\gamma_{\alpha}\left\{\gamma_{\beta}, \gamma_{\mu}\right\}-\left\{\gamma_{\alpha}, \gamma_{\mu}\right\} \gamma_{\beta}-(\alpha \leftrightarrow \beta)\right) \\
& =\frac{i}{2}\left(2 \gamma_{\alpha} g_{\beta \mu}-2 g_{\alpha \mu} \gamma_{\beta}\right) \times 2=2 i\left(g_{\beta \mu} \gamma_{\alpha}-g_{\alpha \mu} \gamma_{\beta}\right)
\end{aligned}
$$

Finite Lorentz transformation,

$$
\begin{align*}
\psi^{\prime}\left(x^{\prime}\right) & =S \psi(x), \quad \text { with } \quad S=\exp \left[-\frac{i}{4} \sigma_{\mu \nu} \epsilon^{\mu \nu}\right] \tag{12}\\
\sigma_{\mu \nu}^{\dagger} & =\gamma_{0} \sigma_{\mu \nu} \gamma_{0} \quad \text { and } \quad S^{\dagger}=\gamma^{0} S^{-1} \gamma^{0}
\end{align*}
$$

S is not unitary. From $\psi^{\prime}\left(x^{\prime}\right)=S \psi$ we get

$$
\psi^{\dagger^{\prime}}\left(x^{\prime}\right)=\psi^{\dagger} S^{\dagger}=\psi^{\dagger} \gamma^{0} S^{-1} \gamma^{0}, \quad \text { or } \quad \bar{\psi}^{\prime}\left(x^{\prime}\right)=\bar{\psi}(x) S^{-1}
$$

$\bar{\psi}$ Dirac conjugate

Fermion bilinears

The fermion bi-linears $\bar{\psi}_{\alpha}(x) \psi_{\beta}(x)$ has simple transformation. For example,

$$
\bar{\psi}^{\prime}\left(x^{\prime}\right) \psi^{\prime}\left(x^{\prime}\right)=\bar{\psi}(x) S^{-1} S \psi(x)=\bar{\psi}(x) \psi(x)
$$

$\bar{\psi}(x) \psi(x)$ is Lorentz invariant. Similarly, .

$$
\begin{aligned}
& \bar{\psi} \gamma_{\mu} \psi \\
& \bar{\psi} \text { 4-vector } \\
& \bar{\psi} \gamma_{\mu} \gamma_{5} \psi \\
& \bar{\psi} \sigma_{\mu \nu} \psi \\
& \text { axial vector } \\
& \bar{\psi} \gamma_{5} \psi
\end{aligned} \quad \text { pseudo scalar }
$$

where $\gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$
Hole Theory (Dirac 1930)
Dirac proposed

$$
\text { vaccum }=(E<0 \text { states all filled and } E>0 \text { states are empty })
$$

Pauli exclusion principle makes vacuum stable.
In this picture hole in the negative sea,

$$
\text { absence of an electron }-|e| \text { and }-|E| \equiv \text { presence of particle }|E| \text { and }+|e|
$$

new particle is called "positron" also called anti - particle. This correspondence of particle and anti-particle is called charge conjugation.

Lorentz group

In Dirac equation, it is not clear what is the origin of Dirac γ matrices. It turns out that they are related to representations of Lorentz group. The Lorentz group is a collection of linear transformations of space-time coordinates

$$
x^{\mu} \rightarrow x^{\prime \mu}=\Lambda_{v}^{\mu} x^{v}
$$

which leaves the proper time

$$
\tau^{2}=\left(x^{o}\right)^{2}-(\vec{x})^{2}=x^{\mu} x^{v} g_{\mu v}=x^{2}
$$

invariant. This requires $\Lambda^{\mu} v$ satisfies the pseudo-orthogonality relation

$$
\Lambda_{\alpha}^{\mu} \Lambda_{\beta}^{v} g_{\mu \nu}=g_{\alpha \beta}
$$

Generators

For infinitesmal transformation, write

$$
\Lambda_{\alpha}^{\mu}=g_{\alpha}^{\mu}+\epsilon_{\alpha}^{\mu} \quad \text { with } \quad\left|\varepsilon_{\alpha}^{\mu}\right| \ll 1
$$

As before, the pseudo-orthogonality relation implies, $\varepsilon_{\alpha \beta}=-\varepsilon_{\beta \alpha}$. Consider $f\left(x^{\mu}\right)$, an arbitrary function of x^{μ}. Under infinitesimal Lorentz transformation, the change in f is

$$
\begin{aligned}
f\left(x^{\mu}\right) & \rightarrow f\left(x^{\prime \mu}\right)=f\left(x^{\mu}+\varepsilon_{\alpha}^{\mu} x^{\alpha}\right) \approx f\left(x^{\mu}\right)+\varepsilon_{\alpha \beta} x^{\beta} \partial_{\alpha} f+\cdots \\
& =f\left(x^{\mu}\right)+\frac{1}{2} \varepsilon_{\alpha \beta}\left[x^{\beta} \partial^{\alpha}-x^{\alpha} \partial^{\beta}\right] f(x)+\cdots
\end{aligned}
$$

Introduce operator $M_{\mu \nu}$ to represent this change,

$$
f\left(x^{\prime}\right)=f(x)-\frac{i}{2} \varepsilon_{\alpha \beta} M^{\alpha \beta} f(x)+\cdots
$$

then

$$
\begin{equation*}
M^{\alpha \beta}=-i\left(x^{\alpha} \partial^{\beta}-x^{\beta} \partial^{\alpha}\right) \tag{13}
\end{equation*}
$$

generators $M_{\mu \nu}$ are called the generators of Lorentz group operating on functions of coordinates. Note that for $\alpha, \beta=1,2,3$ these are just the angular momentum operator. Using the generators given in $\mathrm{Eq}(13)$ we can work out commutators of these generators,

$$
\left[M_{\alpha \beta}, M_{\gamma \delta}\right]=-i\left\{g_{\beta \gamma} M_{\alpha \delta}-g_{\alpha \gamma} M_{\beta \delta}-g_{\beta \delta} M_{\alpha \gamma}+g_{\alpha \delta} M_{\beta \gamma}\right\}
$$

Define

$$
M_{i j}=\epsilon_{i j k} J_{k}, \quad M_{o i}=K_{i}
$$

where $J_{k}^{\prime} s$ correspond to the usual rotations and K_{i} the Lorentz boost operators. We can solve for J_{i} to get

$$
J_{i}=\frac{1}{2} \epsilon_{i j k} M_{j k}
$$

We can compute the commutator of $J_{i}^{\prime} s$,

$$
\left[J_{i}, J_{j}\right]=\left(\frac{1}{2}\right)^{2} \varepsilon_{i k l} \varepsilon_{j m n}\left[M_{k l}, M_{m n}\right]=(-i)\left(\frac{1}{2}\right)^{2} \varepsilon_{i k l} \varepsilon_{j m n}\left(g_{l m} M_{k n}-g_{k m} M_{l n}-g_{l n} M_{k m}+g_{k n} M_{l m}\right)
$$

$$
=\left(\frac{1}{2}\right)^{2}(-i)\left[-\epsilon_{i k l} \varepsilon_{j l n} M_{k n}+\epsilon_{i k l} \varepsilon_{j k n} M_{l n}+\epsilon_{i k l \mid} \varepsilon_{j m l} M_{k m}-\epsilon_{i k \mid} \varepsilon_{j m k} M_{l m}\right]
$$

Using identity

$$
\epsilon_{a b c} \varepsilon_{a l m}=\left(\delta_{b l} \delta_{c m}-\delta_{b m} \delta_{c l}\right)
$$

we get

$$
\begin{equation*}
\left[J_{i}, J_{j}\right]=i \epsilon_{i j k} J_{k} \tag{14}
\end{equation*}
$$

Thus we can identify J_{i} as the angular momentum operator.
Similarly, we can derive

$$
\begin{equation*}
\left[K_{i}, K_{j}\right]=-i \epsilon_{i j k} J_{k}, \quad\left[J_{i}, K_{j}\right]=i \epsilon_{i j k} K_{k} \tag{15}
\end{equation*}
$$

Eqs $(14,15)$ are called the Lorentz algebra.
To simplify the Lorentz algebra, we define the combinations

$$
A_{i}=\frac{1}{2}\left(J_{i}+i K_{i}\right) \quad, B_{i}=\frac{1}{2}\left(J_{i}-i K_{i}\right)
$$

Then we get following commutation relations,

$$
\left[A_{i}, A_{j}\right]=i \epsilon_{i j k} A_{k}, \quad\left[B_{i}, B_{j}\right]=i \epsilon_{i j k} B_{k}, \quad\left[A_{i}, B_{j}\right]=0
$$

For example,

$$
\begin{aligned}
{\left[A_{1}, A_{2}\right] } & =\frac{1}{4}\left[J_{1}+i K_{1}, J_{2}+i K_{2}\right]=\frac{1}{4}\left(\left[J_{1}, J_{2}\right]+i\left[J_{1}, K_{2}\right]+i\left[K_{1}, J_{2}\right]+i^{2}\left[K_{1}, K_{2}\right]\right) \\
& =\frac{1}{4}\left(i J_{3}+i^{2} K_{3}+i^{2} K_{3}-i^{3} J_{3}\right)=\frac{1}{2} i\left(J_{3}+i K_{3}\right)=i A_{3}
\end{aligned}
$$

Thus algebra of Lorentz generators factorizes into 2 independent $S U(2)$ algebra. The representations are just the tensor products of the representation of $S U(2)$ algebra. Thus we label the irreducible representation by $\left(j_{1}, j_{2}\right)$ which transforms as $\left(2 j_{1}+1\right)$-dim representation under A_{i} algebra and $\left(2 j_{2}+1\right)$-dim representation under B_{i} algebra.

Simple representations

(1) $\left(\frac{1}{2}, 0\right)$ representation χ_{a}

This 2-component object has the following properties,

$$
\begin{array}{ll}
A_{i} \chi_{a}=\left(\frac{\sigma_{i}}{2}\right)_{a b} \chi_{b} & \Longrightarrow
\end{array} \begin{aligned}
& \frac{1}{2}\left(J_{i}+i K_{i}\right) \chi_{a}=\left(\frac{\sigma_{i}}{2}\right)_{a b} \chi_{b} \\
& B_{i} \chi_{a}=0
\end{aligned} \quad \Longrightarrow \quad \frac{1}{2}\left(J_{i}-i K_{i}\right) \chi_{a}=0
$$

Combining these realtions

$$
\vec{J} \chi=\left(\frac{\vec{\sigma}}{2}\right) \chi, \quad \vec{K} \chi=-i\left(\frac{\vec{\sigma}}{2}\right) \chi
$$

(2) $\left(0, \frac{1}{2}\right)$ representation η_{a}

Similarly, we can get

$$
\begin{gathered}
A_{i} \eta_{a}=0 \quad \Rightarrow \quad \frac{1}{2}\left(J_{i}+i K_{i}\right) \eta_{a}=0 \\
B_{i} \eta_{a}=\left(\frac{\sigma_{i}}{2}\right)_{a b} \quad \Longrightarrow \quad \frac{1}{2}\left(J_{i}-i K_{i}\right) \eta_{a}=\left(\frac{\sigma_{i}}{2}\right)_{a b} \eta_{b} \\
\vec{J} \eta=\left(\frac{\vec{\sigma}}{2}\right) \eta, \quad \vec{K} \eta=i\left(\frac{\vec{\sigma}}{2}\right) \eta
\end{gathered}
$$

If we define a 4 -component ψ by putting togather these 2 representations,

$$
\psi=\binom{\chi}{\eta}
$$

Then action of the Lorentz generators are

$$
\vec{J} \psi=\left(\begin{array}{cc}
\vec{\sigma} & 0 \tag{16}\\
0 & \frac{\vec{\sigma}}{2}
\end{array}\right) \psi, \quad \vec{K} \psi=\left(\begin{array}{cc}
-i \frac{\vec{\sigma}}{2} & 0 \\
0 & i \frac{\vec{\sigma}}{2}
\end{array}\right) \psi
$$

ψ are related to the 4-component Dirac field we studied before, but with different representation for the γ matrices. This can be seen as follows.

Consider Dirac matrices in the following form

$$
\gamma^{\mu}=\left(\begin{array}{cc}
0 & \sigma^{\mu} \\
\bar{\sigma}^{\mu} & 0
\end{array}\right) \text { where } \quad \sigma^{\mu}=(1, \vec{\sigma}), \bar{\sigma}^{\mu}=(1,-\vec{\sigma})
$$

More explicitly,

$$
\gamma^{\circ}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \vec{\gamma}=\left(\begin{array}{cc}
0 & \vec{\sigma} \\
-\vec{\sigma} & 0
\end{array}\right)
$$

It is straightforward to check that in this case.

$$
\gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

This means that in 4-component field $\psi=\binom{\chi}{\eta}, \chi$ is right-handed and η is left-handed. In this representation, it is easy to check that

$$
\begin{gathered}
\sigma_{0 i}=i \gamma_{0} \gamma_{1}=i\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right)=\left(\begin{array}{cc}
-i \sigma^{i} & 0 \\
0 & i \sigma^{i}
\end{array}\right) \\
\sigma_{i j}=i \gamma_{i} \gamma_{j}=i\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \sigma_{j} \\
-\sigma_{j} & 0
\end{array}\right)=\epsilon_{i j k}\left(\begin{array}{cc}
\sigma_{k} & 0 \\
0 & \sigma_{k}
\end{array}\right)
\end{gathered}
$$

In the Lorentz transformation of Dirac field,

$$
\psi^{\prime}\left(x^{\prime}\right)=S \psi=\exp \left\{-\frac{i}{4} \sigma_{\mu v} \varepsilon^{\mu v}\right\}=\exp \left\{-\frac{i}{4}\left(2 \sigma_{0 i} \varepsilon^{0 i}+\sigma_{i j} \varepsilon^{i j}\right)\right\}
$$

Write $\varepsilon^{0 i}=\beta^{i}, \quad \varepsilon^{i j}=\varepsilon^{i j k} \theta^{k}$

$$
\begin{gathered}
\sigma_{i j} \epsilon^{i j}=\varepsilon^{i j k} \theta^{k} \epsilon_{i j l}\left(\begin{array}{cc}
\sigma_{I} & 0 \\
0 & \sigma_{l}
\end{array}\right)=2\left(\begin{array}{cc}
\vec{\sigma} \cdot \vec{\theta} & 0 \\
0 & \vec{\sigma} \cdot \vec{\theta}
\end{array}\right) \\
\sigma_{0} i \varepsilon^{0} i=\left(\begin{array}{cc}
-i \vec{\sigma} \cdot \vec{\beta} & 0 \\
0 & i \vec{\sigma} \cdot \vec{\beta}
\end{array}\right) \\
-\frac{i}{4}\left(2 \sigma_{0 i \varepsilon^{0 i}}+\sigma_{i j} \varepsilon^{i j}\right)=\frac{-i}{2}\left(\begin{array}{cc}
\vec{\sigma} \cdot \vec{\theta}-i \vec{\sigma} \cdot \vec{\beta} & 0 \\
0 & \vec{\sigma} \cdot \vec{\theta}+i \vec{\sigma} \cdot \vec{\beta}
\end{array}\right)
\end{gathered}
$$

More precisely,

If we write the Lorentz transformations in terms of generators,

$$
L=\exp \left(-i M_{\mu \nu} \varepsilon^{\mu \nu}\right)
$$

then in terms of the generators \vec{J}, \vec{K}

$$
L=\exp [(-i)(\vec{J} \cdot \vec{\theta}+\vec{k} \cdot \vec{\beta})]
$$

We then see from $\mathrm{Eq}(17)$ that for this $\psi, \vec{\jmath}, \vec{K}$ are of the form,

$$
\vec{J}=\frac{1}{2}\left(\begin{array}{cc}
\vec{\sigma} & 0 \\
0 & \vec{\sigma}
\end{array}\right), \quad \vec{K}=\frac{1}{2}\left(\begin{array}{cc}
-i \vec{\sigma} & 0 \\
0 & i \vec{\sigma}
\end{array}\right)
$$

These are the same as those in $\mathrm{Eq}(16)$.
Thus the wavefunction which satisfies Dirac equation is just the representation
$\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right)$ under Lorentz group. Futhermore, the right-handed components transform as
$\left(\frac{1}{2}, 0\right)$ represenation while left-handed components transform as $\left(0, \frac{1}{2}\right)$ representation.

Alternative choice is to use ψ_{R} and the complex conjugate ψ_{R}^{*} (sometime dotted indice are used for this basis) instead of ψ_{R} and ψ_{L}. Since

$$
\vec{J} \psi_{R}=\left(\frac{\vec{\sigma}}{2}\right) \psi_{R}, \quad \vec{K} \psi_{R}=-i\left(\frac{\vec{\sigma}}{2}\right) \psi_{R}
$$

we get for the complex conjuate

$$
\vec{\jmath} \psi_{R}^{*}=\left(\frac{\vec{\sigma}^{*}}{2}\right) \psi_{R}^{*}, \quad \vec{k} \psi_{R}^{*}=i\left(\frac{\vec{\sigma}^{*}}{2}\right) \psi_{R}^{*}
$$

It is probably more clearer to use some other notation for ψ_{R}^{*},

$$
\vec{\jmath} \chi=\left(\frac{\vec{\sigma}^{*}}{2}\right) \chi, \quad \vec{K} \chi=i\left(\frac{\vec{\sigma}^{*}}{2}\right) \chi
$$

Then

$$
\vec{A} \chi=\frac{1}{2}(\vec{J}+i \vec{K}) \chi=0, \quad \vec{B} \chi=\frac{1}{2}(\vec{J}-i \vec{K}) \chi=\left(\frac{\vec{\sigma}^{*}}{2}\right) \chi
$$

and indeed χ belongs to the irrep $\left(0, \frac{1}{2}\right)$.

