QFT-Canonical Quantization

Ling-Fong Li

Chapter 3 Canonical Quantization

Quantization of Free Fields

The quantization of field is a generalization of the quantization in the non-relativistic quantum mechanics where we impose the commutaiton relations for coordinates $q_{i}, i=1,2 \cdots, n$ and their conjugate momenta p_{j},

$$
\left[q_{i}, p_{j}\right]=i \delta_{i j}
$$

where p_{j} is defined by

$$
p_{j}=\frac{\partial L}{\partial \dot{q}_{j}}, \quad L: \text { Lagrangian }
$$

The Hamiltonian is

$$
H=\sum_{i} p_{i} \dot{q}_{i}-L
$$

The dynamics is determined by the Schrodinger equation,

$$
H \Psi=i \frac{\partial \Psi}{\partial t}
$$

Here wave function $\Psi(t)$ gives time evolution while operators p_{i}, q_{j} are time independent. This ρ is known as the Schrodinger picture. Alternatively, we can go to Heisenberg picture where
$p_{i}(t)$ and $q_{j}(t)$ carry the time dependence instead of state vector Ψ.This is known as the Hsienberg picture which is related to the Schrodinger picture by unitary transformation,

$$
\Psi_{S}(t)=e^{-i H t} \Psi_{H}
$$

and

$$
O_{H}(t)=e^{i H t} O_{S} e^{-i H t}
$$

In this picture the canonical commutation relation is then

$$
\left[q_{i}(t), p_{j}(t)\right]=i \delta_{i j}
$$

In relativistic field theory we will use Heisenberg picture so that both spatial coordinate \vec{x} and t both appear as arguments of the field operator $\phi(\vec{x}, t)$
Thus in field theory we replace $q_{i}(t)$ by $\phi(\vec{x}, t)$. To make this correspondence more transparent, divide the 3 -dim space into cells of volume ΔV_{i} and define the i th coordinate $\phi_{i}(t)$ by averaging $\phi(\vec{x}, t)$ over the i th cell

$$
\phi_{i}(t)=\frac{1}{\Delta V_{i}} \int_{\Delta V_{i}} d^{3} \times \phi(\vec{x}, t)
$$

Similarly, $\partial_{0} \phi_{i}(t)$ is the averge of $\partial \phi(\vec{x}, t) / \partial t$ over the ithe cell. Write the Lagrangian L as integration of Lagrangain density \mathcal{L},

$$
L=\int d^{3} \times \mathcal{L}
$$

and let \mathcal{L}_{i} be the average of \mathcal{L} in the i the cell. We define the conjugate momenta as

$$
p_{i}(t)=\frac{\partial L}{\partial\left(\partial_{0} \phi_{i}(t)\right)}=\Delta V_{i} \frac{\partial \mathcal{L}_{i}}{\partial\left(\partial_{0} \phi_{i}(t)\right)} \equiv \Delta V_{i} \pi_{i}(t)
$$

The Hamiltonian is then defined as

$$
H=\sum_{i} p_{i}(t) \partial_{0} \phi_{i}(t)-L=\sum_{i} \Delta V_{i}\left(\pi_{i} \partial_{0} \phi_{i}(t)-\mathcal{L}_{i}\right) \longrightarrow \int d^{3} \times \mathcal{H}
$$

and

$$
\mathcal{H}=\pi_{i} \partial_{0} \phi_{i}(t)-\mathcal{L}
$$

Canonical commutation relations are

$$
\left[\phi_{i}(t), p_{j}(t)\right]=i \delta_{i j}, \quad\left[\phi_{i}(t), \phi_{j}(t)\right]=0, \quad\left[p_{i}(t), p_{j}(t)\right]=0
$$

Or in terms of π_{i}

$$
\left[\phi_{i}(t), \pi_{j}(t)\right]=i \frac{\delta_{i j}}{\Delta V_{i}}
$$

These become in the continuum language,

$$
\begin{gathered}
{\left[\phi(\vec{x}, t), \pi\left(\vec{x}^{\prime}, t\right)\right]=i \delta^{3}\left(\vec{x}-\vec{x}^{\prime}\right), \quad\left[\phi(\vec{x}, t), \phi\left(\vec{x}^{\prime}, t\right)\right]=0} \\
{\left[\pi(\vec{x}, t), \pi\left(\vec{x}^{\prime}, t\right)\right]=0}
\end{gathered}
$$

where the Dirac delta function emerges as the limit of $\frac{\delta_{i j}}{\Delta V_{i}}$ as $\Delta V_{i} \longrightarrow 0$, according to

$$
\int d^{3} x^{\prime} \delta^{3}\left(\vec{x}-\vec{x}^{\prime}\right) f\left(\overrightarrow{x^{\prime}}\right)=f(\vec{x})
$$

Also we have

$$
\pi(\vec{x}, t)=\frac{\partial \mathcal{L}}{\partial\left(\partial_{0} \phi\right)}
$$

Scalar field

Consider a scalar field ϕ satifies the Klein-Gordon equation

$$
\left(\partial^{\mu} \partial_{\mu}+\mu^{2}\right) \phi=0
$$

Lagrangian density is

$$
\mathcal{L}=\frac{1}{2}\left(\partial^{\mu} \phi\right)\left(\partial_{\mu} \phi\right)-\frac{\mu^{2}}{2} \phi^{2}
$$

Euler-Lagrange equation for this \mathcal{L}

$$
\partial^{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial^{\mu} \phi\right)}\right)-\frac{\partial \mathcal{L}}{\partial \phi}=0
$$

gives the Klein-Gordon equation.

$$
\partial^{\mu} \partial_{\mu} \phi+\mu^{2} \phi=0
$$

Canonical quantization

Conjugate momentum

$$
\pi(\vec{x}, t)=\frac{\partial \mathcal{L}}{\partial\left(\partial_{0} \phi\right)}=\left(\partial_{0} \phi\right)
$$

Impose commutation relations,

$$
\begin{gather*}
{[\phi(\vec{x}, t), \pi(\vec{y}, t)]=i \delta^{3}(\vec{x}-\vec{y}), \quad[\phi(\vec{x}, t), \phi(\vec{y}, t)]=0,} \tag{1}\\
{[\pi(\vec{x}, t), \pi(\vec{y}, t)]=0}
\end{gather*}
$$

Hamiltonian density is

$$
\mathcal{H}=\pi \partial_{0} \phi-\mathcal{L}=\frac{1}{2}\left[\left(\partial^{0} \phi\right)^{2}+(\vec{\nabla} \phi)^{2}\right]+\frac{1}{2} \mu^{2} \phi^{2}
$$

We can compute the commutator

$$
[H, \phi(\vec{x}, t)]=\int d^{3} y[\mathcal{H}, \phi(\vec{x}, t)]=-i \partial_{0} \phi
$$

Thus Hamiltonian generates the time translation.
Mode expansion
To find physical contents, expand in classical solutions,

$$
\phi(\vec{x}, t)=\int \frac{d^{3} k}{\sqrt{(2 \pi)^{3} 2 w_{k}}}\left[a(\vec{k}) e^{-i k \cdot x}+a^{\dagger}(\vec{k}) e^{i k \cdot x}\right], \quad k_{0}=\sqrt{\vec{k}^{2}+\mu^{2}}
$$

$a(k)$ and $a^{\dagger}(k)$ are operators. Note that term $a^{\dagger}(\vec{k}) e^{i k \cdot x}$ corresponds to the negative energy solution. This will become the creation operator while the first term $a(\vec{k}) e^{-i k x}$ correspond to destruction operator.

Solve $a(k)$ and $a^{\dagger}(k)$ in ϕ and $\partial_{0} \phi$. This can be carried out as follows. The derivative of ϕ is

$$
\partial_{0} \phi(\vec{x}, t)=\int \frac{d^{3} k}{\sqrt{(2 \pi)^{3} 2 w_{k}}}\left(-i k_{0}\right)\left[a(\vec{k}) e^{-i k \cdot x}-a^{\dagger}(\vec{k}) e^{i k \cdot x}\right], \quad k_{0}=\sqrt{\vec{k}^{2}+\mu^{2}}=w_{k}
$$

Combining these two relations and integrating over x after multiplying $e^{i k^{\prime} x}$, we get

$$
\int e^{i k^{\prime} \times} d^{3} \times\left(\partial_{0} \phi-i k_{0} \phi\right)=\int \frac{d^{3} k}{\sqrt{(2 \pi)^{3} 2 w_{k}}}\left(-2 i k_{0}\right) \delta^{3}\left(k-k^{\prime}\right) a(k)
$$

From this we get

$$
a(k)=i \int d^{3} x \frac{1}{\sqrt{(2 \pi)^{3} 2 w_{k}}}\left[e^{i k x} \partial_{0} \phi-\left(\partial_{0} e^{i k \cdot x}\right)\right]
$$

If we introduce the notation

$$
f \overleftrightarrow{\partial_{0}} g \equiv f \partial_{0} g-\left(\partial_{0} f\right) g
$$

we can write

$$
a(k)=i \int d^{3} x \frac{e^{i k \cdot x}}{\sqrt{(2 \pi)^{3} 2 w_{k}}} \overleftrightarrow{\partial_{0}} \phi(x)
$$

Hermitian conjugate

$$
a^{\dagger}(k)=-i \int \frac{d^{3} x e^{-i k \cdot x}}{\sqrt{(2 \pi)^{3} 2 w_{k}}} \overleftrightarrow{\partial_{0}} \phi(x)
$$

where

$$
f \overleftrightarrow{\partial_{0}} g \equiv f \partial_{0} g-\left(\partial_{0} f\right) g
$$

Commutators can be calculated as

$$
\left[a(\vec{k}), a^{\dagger}\left(\overrightarrow{k^{\prime}}\right)\right]=\delta^{3}\left(\vec{k}-\overrightarrow{k^{\prime}}\right), \quad\left[a(\vec{k}), a\left(\vec{k}^{\prime}\right)\right]=0
$$

For example,

$$
\begin{aligned}
{\left[a(\vec{k}), a^{\dagger}\left(\overrightarrow{k^{\prime}}\right)\right] } & =\int \frac{d^{3} x d^{3} x^{\prime} e^{i k x} e^{-i k^{\prime} x^{\prime}}}{\sqrt{(2 \pi)^{3} 2 w_{k}(2 \pi)^{3} 2 w_{k^{\prime}}}}\left[\partial_{0} \phi(x)-i k_{0} \phi(x), \partial_{0} \phi\left(x^{\prime}\right)-i k_{0}^{\prime} \phi\left(x^{\prime}\right)\right] \\
& =\int \frac{d^{3} x d^{3} x^{\prime} e^{i k x} e^{-i k^{\prime} x^{\prime}}}{\sqrt{(2 \pi)^{3} 2 w_{k}(2 \pi)^{3} 2 w_{k^{\prime}}}}\left(i k_{0}^{\prime}(-i)-i k_{0} i\right) \delta^{3}\left(x-x^{\prime}\right) \\
& =\delta^{3}\left(\vec{k}-\overrightarrow{k^{\prime}}\right)
\end{aligned}
$$

Same as harmonic oscillators.

The Hamiltonian is

$$
H=\int d^{3} k \mathcal{H}_{k}=\frac{1}{2} \int d^{3} k w_{k}\left[a^{\dagger}(\vec{k}) a(\vec{k})+a(\vec{k}) a^{\dagger}(\vec{k})\right]
$$

superposition of oscillators with frequency w_{k}.

We can compute the commutator

$$
\left[H, a^{\dagger}(k)\right]=\int d^{3} k^{\prime} w_{k^{\prime}}\left[a^{\dagger}\left(k^{\prime}\right) a\left(k^{\prime}\right), a^{\dagger}(k)\right]=w_{k} a^{\dagger}(k)
$$

If we have an eigenstate of H with eigenvalue E,

$$
H|E\rangle=E|E\rangle,
$$

then applying the commutator, we get

$$
\left(H a^{\dagger}(k)-a^{\dagger}(k) H\right)|E\rangle=w_{k} a^{\dagger}(k)|E\rangle
$$

which gives

$$
H a^{\dagger}(k)|E\rangle=\left(E+w_{k}\right) a^{\dagger}(k)|E\rangle
$$

Thus the operator $a^{\dagger}(k)$ will increase the energy eigenvalue by w_{k}, creation operator.

Similarly,

$$
[H, a(k)]=\int d^{3} k^{\prime} w_{k^{\prime}}\left[a^{\dagger}\left(k^{\prime}\right) a\left(k^{\prime}\right), a(k)\right]=-w_{k} a(k)
$$

and $a(k)$ will decrease the energy eigenvalue by w_{k}, destruction operator.
From Noether's theorem, momentum operator is,

$$
P_{i}=\int d^{3} x T_{0 i}=\int d^{3} x \frac{\partial \mathcal{L}}{\partial\left(\partial_{0} \phi\right)} \partial_{i} \phi=\int d^{3} x \pi \partial_{i} \phi
$$

and we have the commutator,

$$
\begin{aligned}
{\left[P_{i}, \phi(\vec{x}, t)\right] } & =\int d^{3} y\left[\pi(\vec{y}, t) \partial_{i} \phi(\vec{y}, t), \phi(\vec{x}, t)\right] \\
& =\int d^{3} y \partial_{i} \phi(\vec{y}, t)(-i) \delta^{3}(\vec{x}-\vec{y})=-i \partial_{i} \phi(\vec{x}, t)
\end{aligned}
$$

In terms of creation and annihilation operators,

$$
\vec{p}=\frac{1}{2} \int d^{3} k \vec{k}\left[a^{\dagger}(k) a(k)+a(k) a^{\dagger}(k)\right]=\int d^{3} k \overrightarrow{p_{k}}
$$

with

$$
\overrightarrow{p_{k}}=\frac{\vec{k}}{2}\left[a^{\dagger}(k) a(k)+a(k) a^{\dagger}(k)\right]
$$

Note

$$
a(k) a^{\dagger}(k)=a^{\dagger}(k) a(k)+\delta^{3}(0)
$$

Interpret $\delta^{3}(0)$ as

$$
\delta^{3}(\vec{k})=\int \frac{d^{3} x}{(2 \pi)^{3}} e^{i \vec{k} \cdot \vec{x}}
$$

as $\vec{k} \rightarrow 0$

$$
\delta^{3}(0)=(2 \pi)^{-3} \int d^{3} x=\frac{V}{(2 \pi)^{3}}
$$

V total volume of the system. Then

$$
H=\int d^{3} k w_{k}\left[a^{\dagger}(k) a(k)+\frac{(2 \pi)^{-3}}{2} V\right]
$$

Last term will be dropped.
To achieve this more formally, use normal ordering.

Normal ordering

In normal ordering : (\cdots) : move all $a^{\dagger}(k)$ to the left of $a(k)$.
For example,

$$
\begin{aligned}
: & a(k) a^{\dagger}(k):=a^{\dagger}(k) a(k) \\
: & a^{\dagger}(k) a(k):=a^{\dagger}(k) a(k)
\end{aligned}
$$

Vaccum is defined by

$$
a(k)|0\rangle=0 \quad \forall \vec{k} \quad \Longrightarrow\langle 0| a^{\dagger}(k)=0
$$

Then

$$
\langle 0|: f\left(a, a^{\dagger}\right):|0\rangle=0
$$

Define Hamiltonican by normaling ordering

$$
H=\frac{1}{2} \int d^{3} k w_{k}:\left[a^{\dagger}(k) a(k)+a(k) a^{\dagger}(k)\right]:=\int d^{3} k w_{k} a^{\dagger}(k) a(k)
$$

Similarly,

$$
\vec{p}=\frac{1}{2} \int d^{3} k \overrightarrow{p_{k}}:\left[a^{\dagger}(k) a(k)+a(k) a^{\dagger}(k)\right]:=\int d^{3} k \vec{p}_{k} a^{\dagger}(k) a(k)
$$

Then vacuum has zero energy and momentum.

Particle interpretation

State defined by

$$
|\vec{k}\rangle=\sqrt{(2 \pi)^{3} 2 w_{k}} a^{\dagger}(k)|0\rangle
$$

is eigenstate of $H \& \vec{p}$,

$$
H|\vec{k}\rangle=w_{k}|\vec{k}\rangle, \quad \vec{p}|\vec{k}\rangle=\vec{k}|\vec{k}\rangle \quad \text { where } w_{k}=\sqrt{\vec{k}^{2}+\mu^{2}}
$$

Interpret this as one-particle state because eigenvalues are related by

$$
w_{k}^{2}+\vec{k}^{2}=\mu^{2}
$$

Similarly, we can define 2 particle satate by

$$
\left|\vec{k}_{1}, \vec{k}_{2}\right\rangle=\sqrt{(2 \pi)^{3} 2 w_{k_{1}}} \sqrt{(2 \pi)^{3} 2 w_{k_{2}}} a^{\dagger}\left(\overrightarrow{k_{1}}\right) a^{\dagger}\left(\overrightarrow{k_{2}}\right)|0\rangle
$$

Generlization to multiparticle states,

$$
\left|\vec{k}_{1}, \cdots \vec{k}_{n}\right\rangle=\sqrt{(2 \pi)^{3} 2 w_{k_{1}}} \cdots \sqrt{(2 \pi)^{3} 2 w_{k_{n}}} a^{\dagger}\left(\overrightarrow{k_{1}}\right) \cdots a^{\dagger}\left(\overrightarrow{k_{2}}\right)|0\rangle
$$

Bose statistics

Expand arbitrary state

$$
|\Phi\rangle=\left[C_{0}+\sum_{i=1}^{\infty} \int d^{3} k_{1} \ldots d^{3} k_{n} C_{n}\left(k_{1}, k_{2}, \ldots, k_{n}\right) a^{\dagger}\left(\overrightarrow{k_{1}}\right) \ldots a^{+}\left(\overrightarrow{k_{n}}\right)|0\rangle\right]
$$

$C_{n}\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ the momentum space wavefunction.
Since

$$
\begin{gathered}
{\left[a^{+}\left(k_{i}\right), a^{+}\left(k_{j}\right)\right]=0} \\
C_{n}\left(k_{1}, \ldots, k_{i}, \ldots, k_{j} \ldots, k_{n}\right)=C_{n}\left(k_{1}, \ldots, k_{j}, \ldots, k_{i} \ldots, k_{n}\right)
\end{gathered}
$$

$C_{n}\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ satisfies Bose statistics

Scalar fields with symmetry

Suppose there are 2 scalar fields with Lagrangian,

$$
\mathcal{L}=\frac{1}{2}\left(\partial^{\mu} \phi_{1}\right)\left(\partial_{\mu} \phi_{1}\right)-\frac{\mu_{1}^{2}}{2} \phi_{1}^{2}+\frac{1}{2}\left(\partial^{\mu} \phi_{2}\right)\left(\partial_{\mu} \phi_{2}\right)-\frac{\mu_{2}^{2}}{2} \phi_{2}^{2}
$$

Here both ϕ_{1}, ϕ_{2} are Hermitian fields. The Euler-Lagrange equations are

$$
\partial^{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial^{\mu} \phi_{i}\right)}\right)-\frac{\partial \mathcal{L}}{\partial \phi_{i}}=0, \quad i=1,2
$$

which give

$$
\partial^{\mu} \partial_{\mu} \phi_{1}+\mu_{1}^{2} \phi_{1}=0, \quad \partial^{\mu} \partial_{\mu} \phi_{2}+\mu_{2}^{2} \phi_{2}=0
$$

It is clear that in the quantization, ϕ_{1}, ϕ_{2} each will have their own creation and destruction operators, $a_{1}^{\dagger}\left(\overrightarrow{k_{1}}\right) a_{2}^{\dagger}\left(\overrightarrow{k_{2}}\right), a_{1}\left(\overrightarrow{k_{1}}\right) a_{2}\left(\overrightarrow{k_{2}}\right)$.
However, when $\mu_{1}^{2}=\mu_{2}^{2}$, the Lagrangian becomes,

$$
\mathcal{L}=\frac{1}{2}\left[\left(\partial^{\mu} \phi_{1}\right)\left(\partial_{\mu} \phi_{1}\right)+\left(\partial^{\mu} \phi_{2}\right)\left(\partial_{\mu} \phi_{2}\right)\right]-\frac{\mu^{2}}{2}\left(\phi_{1}^{2}+\phi_{2}^{2}\right)
$$

and is invariant under the rotation in ϕ_{1}, ϕ_{2}, space,

$$
\begin{gathered}
\phi_{1} \longrightarrow \phi_{1}^{\prime}=\cos \theta \phi_{1}+\sin \theta \phi_{2} \\
\phi_{2} \longrightarrow \phi_{2}^{\prime}=-\sin \theta \phi_{1}+\cos \theta \phi_{2}
\end{gathered}
$$

Here θ is independent of x^{μ} and is usually called the global $O(2)$ symmetry. To find the conserved current, take the rotation to be infintesmal

$$
\delta \phi_{1}=\phi_{1}^{\prime}-\phi_{1}=\theta \phi_{2}, \quad \delta \phi_{2}=\phi_{2}^{\prime}-\phi_{2}=-\theta \phi_{1}
$$

and get the conserved current,

$$
j_{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial^{\mu} \phi_{i}\right)} \delta \phi_{i}=\left(\partial_{\mu} \phi_{1}\right) \phi_{2}-\left(\partial_{\mu} \phi_{2}\right) \phi_{1}
$$

Sometime we combine these two fields into a single complex field,

$$
\phi=\frac{1}{\sqrt{2}}\left(\phi_{1}+i \phi_{2}\right)
$$

and the Lagrangian becomes,

$$
\mathcal{L}=\left(\partial^{\mu} \phi^{\dagger}\right)\left(\partial_{\mu} \phi\right)-\mu^{2} \phi^{\dagger} \phi
$$

The symmetry becomes the phase transformation,

$$
\phi \longrightarrow \phi^{\prime}=e^{-i \theta} \phi
$$

and is called the global $U(1)$ transformation. The Noether's current is then,

$$
j_{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial^{\mu} \phi\right)} \delta \phi+\frac{\partial \mathcal{L}}{\partial\left(\partial^{\mu} \phi^{\dagger}\right)} \delta \phi^{\dagger}=i\left[\left(\partial^{\mu} \phi^{\dagger}\right) \phi-\left(\partial^{\mu} \phi\right) \phi^{\dagger}\right]
$$

Thus $O(2)$ symmetry is equivalent to $U(1)$ symmetry.

Fermion fields

To quantize fermion field we can proceed the same way as the scalar field. Start with Dirac equation for free particles,

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0 \quad \text { or } \quad \bar{\psi}\left(-i \gamma^{\mu} \overleftarrow{\partial_{\mu}}-m\right)=0
$$

Lagrangian density for this equation is

$$
\mathcal{L}=\bar{\psi}_{\alpha}\left(i \gamma^{\mu} \partial_{\mu}-m\right)_{\alpha \beta} \psi_{\beta}
$$

Then

$$
\frac{\partial \mathcal{L}}{\partial \psi_{\gamma}^{\dagger}}=\left(\gamma^{0}\right)_{\gamma \alpha}\left(i \gamma^{\mu} \partial_{\mu}-m\right)_{\alpha \beta} \psi_{\beta}, \quad \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi_{\gamma}\right)}=0
$$

and Euler-Lagrange equation gives,

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right)_{\alpha \beta} \psi_{\beta}=0
$$

Conjugate momentum density is

$$
\pi_{\alpha}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{0} \psi_{\alpha}\right)}=i \psi_{\alpha}^{\dagger}
$$

If we impose the commutation relation like scalar field, will get Dirac particles satisfying Bose statistics which is not correct physically.

Impose anticommutation relations to get Fermi-Dirac statistics,

$$
\left\{\pi_{\alpha}(\vec{x}, t), \psi_{\beta}(\vec{y}, t)\right\}=i \delta^{3}(\vec{x}-\vec{y}) \delta_{\alpha \beta}, \quad\left\{\psi_{\alpha}(\vec{x}, t), \psi_{\beta}(\vec{y}, t)\right\}=0
$$

Hamiltonian density

$$
\mathcal{H}=\sum_{\alpha} \pi_{\alpha} \dot{\psi}_{\alpha}-\mathcal{L}=i \psi^{\dagger} \gamma_{0} \gamma_{0} \partial_{0} \psi-\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=\bar{\psi}(i \vec{\gamma} \cdot \vec{\nabla}+m) \psi
$$

Mode expansion

Expansion in terms of classical solutions,

$$
\begin{aligned}
\psi(\vec{x}, t) & =\sum_{s} \int \frac{d^{3} p}{\sqrt{(2 \pi)^{3} 2 E_{p}}}\left[b(p, s) u(p, s) e^{-i p \cdot x}+d^{\dagger}(p, s) v(p, s) e^{i p \cdot x}\right] \\
\psi^{\dagger}(\vec{x}, t) & =\sum_{s} \int \frac{d^{3} p}{\sqrt{(2 \pi)^{3} 2 E_{p}}}\left[b^{\dagger}(p, s) u^{\dagger}(p, s) e^{i p \cdot x}+d(p, s) v^{\dagger}(p, s) e^{-i p \cdot x}\right]
\end{aligned}
$$

Invert these relations to get the field operators in the momentum space. Multiply ψ by $u^{+}\left(p^{\prime}, s^{\prime}\right) e^{i p^{\prime} x}$ and integrate over x,

$$
\int d^{3} x e^{i p^{\prime} x} u^{\dagger}\left(p^{\prime}, s^{\prime}\right) \psi(\vec{x}, t)=\sum_{s} \int \frac{d^{3} p}{\sqrt{(2 \pi)^{3} 2 E_{p}}} b(p, s) u^{\dagger}\left(p^{\prime}, s^{\prime}\right) u(p, s)(2 \pi)^{3} \delta^{3}\left(p-p^{\prime}\right)
$$

where we have used the relation,

$$
u^{\dagger}\left(-p, s^{\prime}\right) v(p, s)=0
$$

From the Dirac equation we have

$$
\bar{u}\left(p, s^{\prime}\right) \gamma^{\mu}(\not p-m) u(p, s)=0
$$

and

$$
\bar{u}\left(p, s^{\prime}\right)(\not p-m) \gamma^{\mu} u(p, s)=0
$$

Add these two equations we get

$$
p^{\mu} \bar{u}\left(p, s^{\prime}\right) u(p, s)=m \bar{u}\left(p, s^{\prime}\right) \gamma^{\mu} u(p, s)
$$

Take the time component,

$$
u^{\dagger}\left(p^{\prime}, s^{\prime}\right) u(p, s)=2 p^{0}
$$

Using this relation, we get

$$
b(p, s)=\int \frac{d^{3} x e^{i p \cdot x}}{\sqrt{(2 \pi)^{3} 2 E_{p}}} u^{\dagger}(p, s) \psi(\vec{x}, t)
$$

The Hermitian conjugate yields

$$
b^{\dagger}(p, s)=\int \frac{d^{3} x e^{-i p \cdot x}}{\sqrt{(2 \pi)^{3} 2 E_{p}}} \psi^{\dagger}(\vec{x}, t) u(p, s)
$$

From these, we can compute the anti-commutation relations for b, d,

$$
\left.\begin{array}{rl}
\left\{b(p, s), b^{\dagger}\left(p^{\prime}, s^{\prime}\right)\right\} & =\int \frac{d^{3} x^{\prime} d^{3} x e^{i p \cdot x}}{\sqrt{(2 \pi)^{3} 2 E_{p}}} \frac{e^{-i p^{\prime} \cdot x^{\prime}}}{\sqrt{(2 \pi)^{3} 2 E_{p^{\prime}}}}\left\{u^{\dagger}(p, s) \psi(\vec{x}, t), \psi^{\dagger}\left(\vec{x}^{\prime}, t\right) u\left(p^{\prime}, s^{\prime}\right)\right\} \\
& =\int \frac{d^{3} x e^{i p \cdot x}}{\sqrt{(2 \pi)^{3} 2 E_{p}}} \int \frac{d^{3} x^{\prime} e^{-i p^{\prime} \cdot x^{\prime}}}{\sqrt{(2 \pi)^{3} 2 E_{p^{\prime}}}}(2 \pi)^{3} \delta^{3}\left(x-x^{\prime}\right) u^{\dagger}(p, s) u\left(p^{\prime}, s^{\prime}\right) \\
& =\delta_{s s^{\prime}} \delta^{3}(\vec{p}-\vec{p} \prime
\end{array}\right)
$$

SImilarly

$$
\left\{d(p, s), d^{\dagger}\left(p^{\prime}, s^{\prime}\right)\right\}=\delta_{s s^{\prime}} \delta^{3}\left(\vec{p}-\vec{p}^{\prime}\right)
$$

and all other anticommutators vanish.
Hamiltonian

$$
H=\sum_{s} \int d^{3} p \mathcal{H}_{p s}
$$

where

$$
\mathcal{H}_{p s}=E_{p}\left[b^{\dagger}(p, s) b(p, s)-d(p, s) d^{\dagger}(p, s)\right]
$$

Similarly,

$$
\vec{p}=\sum_{s} d^{3} p \vec{p}_{p}
$$

where

$$
\vec{p}_{p}=\vec{p}\left[b^{\dagger}(p, s) b(p, s)-d(p, s) d^{\dagger}(p, s)\right]
$$

Commutators of H with $b^{\dagger}(p, s)$

$$
\begin{gathered}
{\left[H, b^{\dagger}(p, s)\right]=\sum_{s^{\prime}} d^{3} p^{\prime}\left[b^{\dagger}\left(p^{\prime}, s^{\prime}\right) b\left(p^{\prime}, s^{\prime}\right), b^{\dagger}(p, s)\right] E_{p}=b^{\dagger}(p, s) E_{p}} \\
{\left[\vec{p}, b^{\dagger}(p, s)\right]=\vec{p} b^{\dagger}(p, s)}
\end{gathered}
$$

where we have used the identity

$$
[A B, C]=A\{B, C\}-\{A, C\} B
$$

$b^{\dagger}(p, s)$ creats a particle with E_{p} and \vec{p} with relation $E_{p}=\sqrt{\vec{p}^{2}+m^{2}}$. $d^{\dagger}(p, s)$ creates a particle with same mass but opposite charge as $b^{\dagger}(p, s)$.

Symmetry

$$
\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi
$$

is invariant under,

$$
\psi(x) \rightarrow e^{i \alpha} \psi(x) \Longrightarrow \psi^{\dagger}(x) \rightarrow \psi^{\dagger}(x) e^{-i \alpha} \quad \alpha: \text { some real constant }
$$

Noether's theorem,\Longrightarrow conserved current,

$$
\partial^{\mu} j_{\mu}=0, \quad \text { where } \quad j_{\mu}=\bar{\psi} \gamma_{\mu} \psi
$$

To see this consider the infinitesmal transformation

$$
\delta \psi=i \alpha \psi, \quad \delta \psi^{\dagger}=-i \alpha \psi^{\dagger}
$$

Then from Noether's theorem, the conserved current is

$$
j_{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi_{\alpha}\right)} \delta \psi_{\alpha}=-i \alpha \bar{\psi} \gamma_{\mu} \psi
$$

We can compute the conserved charge

$$
\begin{aligned}
Q= & \int j_{0}(x) d^{3} x=\int d^{3} x: \psi^{\dagger}(\vec{x}, t) \psi(\vec{x}, t): \\
= & \int d^{3} x \sum_{s s^{\prime}} \int \frac{d^{3} p^{\prime}}{\sqrt{(2 \pi)^{3} 2 E_{p^{\prime}}}}:\left[b^{\dagger}\left(p^{\prime}, s^{\prime}\right) u^{\dagger}\left(p^{\prime}, s^{\prime}\right) e^{i p^{\prime} \cdot x}+d\left(p^{\prime}, s^{\prime}\right) v^{\dagger}\left(p^{\prime}, s^{\prime}\right) e^{-i p^{\prime} \cdot x}\right] \\
& \times \int \frac{d^{3} p}{\sqrt{(2 \pi)^{3} 2 E_{p}}}\left[b(p, s) u(p, s) e^{-i p \cdot x}+d^{\dagger}(p, s) v(p, s) e^{i p \cdot x}\right]: \\
= & \sum_{s} \int d^{3} p:\left[b^{\dagger}(p, s) b(p, s)+d(p, s) d^{\dagger}(p, s)\right]:=\sum \int d^{3} p\left[N^{+}(p, s)-N^{-}(p, s)\right]
\end{aligned}
$$

where

$$
N_{p s}^{+}=b^{+}(p, s) b(p, s) \quad N_{p s}^{-}=d^{+}(p, s) d(p, s)
$$

are the number operators \Longrightarrow particle and anti-particle have opposite "charge".

Electromagnetic fields

Maxwell's equations,

$$
\begin{gather*}
\nabla \cdot \vec{B}=0, \quad \nabla \times \vec{E}+\frac{\partial \vec{B}}{\partial t}=0, \tag{2}\\
\nabla \cdot \vec{E}=0, \quad \frac{1}{\mu_{0}} \nabla \times \vec{B}-\epsilon_{0} \frac{\partial \vec{E}}{\partial t}=0 \tag{3}
\end{gather*}
$$

Introduce \vec{A}, ϕ by

$$
\begin{equation*}
\vec{B}=\nabla \times \vec{A}, \quad \vec{E}=-\nabla \phi-\frac{\partial \vec{A}}{\partial t} \tag{4}
\end{equation*}
$$

These solve equations in $\mathrm{Eq}(2)$. Write relations in $\mathrm{Eq}(4)$ as

$$
F^{\mu v}=\partial^{\mu} A^{v}-\partial^{v} A^{\mu} \quad \text { with } \quad F^{0 i}=\partial^{0} A^{i}-\partial^{i} A^{0}=-E^{i}, \quad F^{i j}=\partial^{i} A^{j}-\partial^{j} A^{i}=-\epsilon_{i j k} B_{k}
$$

Other two sets of equations in $\mathrm{Eq}(3)$

$$
\partial_{v} F^{\mu v}=0, \quad \mu=0,1,2,3
$$

For example

$$
\begin{gathered}
\mu=0, \quad \partial_{i} F^{0 i}=0 \Rightarrow \nabla \cdot \vec{E}=0 \\
\mu=i, \quad \partial_{\nu} F^{i v}=0 \quad \Rightarrow \quad \nabla \times \vec{B}-\frac{\partial \vec{E}}{\partial t}=0
\end{gathered}
$$

Note $c^{2}=\frac{1}{\mu_{0} \epsilon_{0}}=1 . F^{\mu \nu}$ is invariant under the transformation,

$$
A^{\mu} \longrightarrow A^{\mu}+\partial^{\mu} \alpha \quad \alpha=\alpha(x)
$$

$\alpha(x)$ is arbitrary function. This is called gauge transformation. Given a set of \vec{B} and \vec{E} fields, \vec{A}, and ϕ are not unique. Different $\alpha(x)$ gives same \vec{B} and \vec{E} fields This property is usually called the gauge invariance.

Lagrangian density given by,

$$
\mathcal{L}=-\frac{1}{4} F_{\mu v} F^{\mu v}=\frac{1}{2}\left(\vec{E}^{2}-\vec{B}^{2}\right)
$$

will give Maxwell equations a la Euler-Lagrange equations.. To see this we compute

$$
\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} A_{v}\right)}=-\left(\partial^{\mu} A^{v}-\partial^{v} A^{\mu}\right), \quad \frac{\partial \mathcal{L}}{\partial A_{v}}=0
$$

Then

$$
\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} A_{v}\right)}=\frac{\partial \mathcal{L}}{\partial A_{v}}, \quad \Longrightarrow \partial_{\mu}\left(\partial^{\mu} A^{v}-\partial^{v} A^{\mu}\right)=\partial_{\mu} F^{\mu v}=0
$$

These are indeed the Maxwell equations as we discussed before.
Conjugate momenta

$$
\pi_{0}=\frac{\partial L}{\partial\left(\partial_{0} A_{0}\right)}=0, \quad \pi^{i}(x)=\frac{\partial L}{\partial\left(\partial_{0} A_{i}\right)}=-F^{0 i}=E^{i}
$$

No conjugate momenta for $A_{0} \Longrightarrow$ not a dynamical degree of freedom.
Hamiltanian density,

$$
\mathcal{H}=\pi^{k} \dot{A}_{k}-\mathcal{L}=\frac{1}{2}\left(\vec{E}^{2}+\vec{B}^{2}\right)+(\vec{E} \cdot \nabla) A_{0}
$$

Using $\vec{\nabla} \cdot \vec{E}=0$,Hamiltonian becomes,

$$
H=\int d^{3} \times \mathcal{H}=\frac{1}{2} \int d^{3} x\left(\vec{E}^{2}+\vec{B}^{2}\right)
$$

Impose commutation relation,

$$
\left[\pi^{i}(\vec{x}, t), A^{j}(\vec{y}, t)\right]=-i \delta_{i j} \delta^{3}(\vec{x}-\vec{y}), \quad \ldots
$$

But this is not consistent with $\vec{\nabla} \cdot \vec{E}=0$ because

$$
\left[\nabla \cdot E(x, t), A_{j}(x, t)\right]=-i \partial_{j} \delta^{3}(x-y) \neq 0
$$

δ-function in momentum space

$$
\partial_{j} \delta^{3}(\vec{x}-\vec{y})=i \int \frac{d^{3} k}{(2 \pi)^{3}} e^{i \vec{k} \cdot(\vec{x}-\vec{y})} k_{j}
$$

To get zero for the commutator of $\nabla \cdot E$, replace,
then

$$
\partial_{i} \delta_{i j}^{t r} \delta^{3}(\vec{x}-\vec{y})=i \int \frac{d^{3} k}{(2 \pi)^{3}} e^{i \vec{k}(\cdot \vec{x}-\vec{y})} k_{i}\left(\delta_{i j}-\frac{k_{i} k_{j}}{k^{2}}\right)=0
$$

So commutator is modified to,

$$
\left[E^{i}(x, t), A_{j}(y, t)\right]=-i \delta_{i j}^{t r}(\vec{x}-\vec{y})
$$

which implies

$$
\left[E^{i}(x, t), \vec{\nabla} \cdot \vec{A}(y, t)\right]=0
$$

Now that A_{0} and $\vec{\nabla} \cdot \vec{A}$ commute with all operators, they must be C-number. Choose a gauge such that

$$
A_{0}=0 \text { and } \nabla \cdot \vec{A}=0 \quad \text { radiation gauge }
$$

In this gauge

$$
\begin{aligned}
\pi^{i}=\partial^{i} A^{0}-\partial^{0} A^{i} & =-\partial^{0} A^{i} \\
{\left[\partial_{0} A^{i}(\vec{x}, t), A^{j}(\vec{y}, t)\right] } & =i \delta_{i j}^{\text {tr }}(\vec{x}-\vec{y})
\end{aligned}
$$

Mode expansion

Equation of motion $\partial_{v} F^{\mu \nu}=0$ gives

$$
\partial_{v}\left(\partial^{v} A^{\mu}-\partial^{\mu} A^{v}\right)=\square A^{\mu}-\partial^{\mu}\left(\partial_{v} A^{v}\right)=0
$$

In radiaiton gauge,

$$
A_{0}=0, \quad \vec{\nabla} \cdot \vec{A}=0
$$

wave equation becomes
$\square \vec{A}=0 \quad$ massless Klein-Gordon equation
General solution

$$
\vec{A}(\vec{x}, t)=\int \frac{d^{3} k}{\sqrt{2 \omega(2 \pi)^{3}}} \sum_{\lambda} \vec{\epsilon}(\vec{k}, \lambda)\left[a(k, \lambda) e^{-i k x}+a^{\dagger}(k, \lambda) e^{i k x}\right] \quad w=k_{0}=|\vec{k}|
$$

Only two degrees of freedom

$$
\vec{\epsilon}(k, \lambda), \lambda=1,2 \quad \text { with } \vec{k} \cdot \vec{\epsilon}(k, \lambda)=0
$$

Standard choice

$$
\vec{\epsilon}(k, \lambda) \cdot \vec{\epsilon}\left(k, \lambda^{\prime}\right)=\delta_{\lambda \lambda^{\prime}}, \quad \vec{\epsilon}(-k, 1)=-\vec{\epsilon}(k, 1), \quad \vec{\epsilon}(-k, 2)=\vec{\epsilon}(-k, 2)
$$

Solve for $a(k, \lambda)$ and $a^{+}(k, \lambda)$

$$
\begin{aligned}
a(k, \lambda) & =i \int \frac{d^{3} x}{\sqrt{(2 \pi)^{3} 2 \omega}}\left[e^{i k \cdot x} \overleftrightarrow{\partial_{0}} \vec{\epsilon}(k, \lambda) \cdot \vec{A}(x)\right] \\
a^{\dagger}(k, \lambda) & =-i \int \frac{d^{3} x}{\sqrt{(2 \pi)^{3} 2 \omega}}\left[e^{-i k \cdot x} \overleftrightarrow{\partial_{0}} \vec{\epsilon}(k, \lambda) \cdot \vec{A}(x)\right]
\end{aligned}
$$

Commutation relations,

$$
\left[a(k, \lambda), a^{\dagger}\left(k^{\prime}, \lambda^{\prime}\right)\right]=\delta_{\lambda \lambda^{\prime}} \delta^{3}\left(\vec{k}-\vec{k}^{\prime}\right), \quad\left[a(k, \lambda), a\left(k^{\prime}, \lambda^{\prime}\right)\right]=0
$$

Hamiltonian and momentum operators are

$$
\begin{gathered}
H=\frac{1}{2} \int d^{3} x:\left(E^{2}+B^{2}\right):=\int d^{3} k \omega \sum_{\lambda} a^{+}(k, \lambda) a(k, \lambda) \\
\vec{P}=\int d^{3} x: E \times B:=\int d^{3} k \vec{k} \sum_{\lambda} a^{+}(k, \lambda) a(k, \lambda)
\end{gathered}
$$

The vaccum is defined by

$$
a(\vec{k}, \lambda) \mid 0>=0 \quad \forall \vec{k}, \lambda
$$

and one photon state with momentum k polarization λ is given by, $a^{\dagger}(\vec{k}, \lambda) \mid 0>$.

Appendix 1- Simple Harmonic Oscillator

Here we review the creation and annihilation operators in the simple harmonic oscillator in one dimension. The Hamiltonian is

$$
H=\frac{p^{2}}{2}+\frac{1}{2} \omega^{2} x^{2}
$$

where for convenience we have set $m=1$. Here p, x satisfy the comutation relation,

$$
[x, p]=i
$$

Define

$$
a=\sqrt{\frac{1}{2 \omega}}(\omega x+i p), \quad a^{\dagger}=\sqrt{\frac{1}{2 \omega}}(\omega x-i p)
$$

The commutator is ,

$$
\left[a, a^{\dagger}\right]=\frac{1}{2 \omega}[\omega x+i p, \omega x-i p]=1
$$

From

$$
x=\frac{1}{\sqrt{2 \omega}}\left(a+a^{\dagger}\right), \quad p=-i \sqrt{\frac{\omega}{2}}\left(a-a^{\dagger}\right)
$$

we get for the Hamiltonian

$$
H=\frac{1}{2}\left[-\frac{\omega}{2}\left(a-a^{\dagger}\right)^{2}+\frac{\omega^{2}}{2 \omega}\left(a+a^{\dagger}\right)^{2}=\frac{\omega}{2}\left(a^{\dagger} a+a a^{\dagger}\right)\right.
$$

Using the commutation relation we can write H as

$$
H=\omega\left(a^{\dagger} a+\frac{1}{2}\right)
$$

The second term here is called the zero-point energy.

We can compute the commutator of H with a or a^{\dagger},

$$
[H, a]=-\omega a, \quad\left[H, a^{\dagger}\right]=\omega a^{\dagger}
$$

Suppose $|E\rangle$ is eigenstate of Hamiltoian with eigenvalue E,

$$
H|E\rangle=E|E\rangle
$$

Then we get

$$
\left(H a^{\dagger}-a^{\dagger} H\right)|E\rangle=\omega a^{\dagger}|E\rangle, \quad \Longrightarrow \quad H\left(a^{\dagger}|E\rangle\right)=(E+\omega)\left(a^{\dagger}|E\rangle\right)
$$

Thus a^{\dagger} increases the energy eigenvalue by ω and is called raising operator (or creation operator). Similarly,

$$
(H a-a H)|E\rangle=-\omega a|E\rangle, \quad \Longrightarrow \quad H(a|E\rangle)=(E-\omega)(a|E\rangle)
$$

which implies that the operator a decreaes the energy eigenvalue by ω. Since H is bounded below, there must exist a state with lowest energy eigen value, the ground state $|0\rangle$, defined by

$$
a|0\rangle=0
$$

will have energy eigen value

$$
H|0\rangle=\frac{1}{2} \omega|0\rangle
$$

It is clear that the excited states are related to $|0\rangle$ by the action of a^{\dagger}. For example,

$$
H|n\rangle=\left(n+\frac{1}{2}\right) \omega|n\rangle, \quad \text { where } \quad|n\rangle=\frac{\left(a^{\dagger}\right)^{n}}{\sqrt{n!}}|0\rangle
$$

The state $|n\rangle$ can be interpreted as state with n quanta, each with energy ω. So the operator $N=a^{\dagger} a$ is the number operator.

Appendix 2-U(1) local symmetry

The free Maxwll's equations are

$$
\begin{gathered}
\vec{\nabla} \cdot \vec{B}=0, \quad \vec{\nabla} \times \vec{E}+\frac{\partial \vec{B}}{\partial t}=0, \\
\vec{B}=\nabla \times \vec{A}, \quad \vec{E}=-\nabla \phi-\frac{\partial \vec{A}}{\partial t}
\end{gathered}
$$

Solve the first two equations by introducing \vec{A}, ϕ

$$
\begin{equation*}
\vec{B}=\nabla \times \vec{A}, \quad \vec{E}=-\nabla \phi-\frac{\partial \vec{A}}{\partial t} \tag{5}
\end{equation*}
$$

Convenient to write

$$
F^{\mu v}=\partial^{\mu} A^{v}-\partial^{v} A^{\mu} \quad \text { with } \quad F^{0 i}=\partial^{0} A^{i}-\partial^{i} A^{0}=-E^{i}, \quad F^{i j}=\partial^{i} A^{j}-\partial^{j} A^{i}=-\epsilon_{i j k} B_{k}
$$

For a charged particle moving in electromagnetic field, the equation of motion is,

$$
m \frac{d^{2} \vec{x}}{d t^{2}}=e(\vec{E}+\vec{v} \times \vec{B})
$$

The Lagrangian for these equations is

$$
L=\frac{1}{2} m(\vec{v})^{2}+e \vec{A} \cdot \vec{v}-e A_{0}
$$

To see this, we compute the derivatives with respect to \vec{x} and \vec{v},

$$
\frac{\partial L}{\partial v_{i}}=m v_{i}+e A_{i}, \quad \frac{\partial L}{\partial x_{i}}=e \frac{\partial A_{j}}{\partial x_{i}} v_{j}-e \frac{\partial A_{0}}{\partial x_{i}}
$$

and

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial v_{i}}\right)=m \frac{d v_{i}}{d t}+e \frac{\partial A_{i}}{\partial x_{j}} \frac{d x_{j}}{d t}+e \frac{\partial A_{i}}{\partial t}
$$

Euler-Lagrange equation gives

$$
m \frac{d v_{i}}{d t}+e \frac{\partial A_{i}}{\partial x_{j}} \frac{d x_{j}}{d t}+e \frac{\partial A_{i}}{\partial t}=e \frac{\partial A_{j}}{\partial x_{i}} v_{j}-e \frac{\partial A_{0}}{\partial x_{i}}
$$

On the other hand,

$$
(\vec{v} \times \vec{B})_{i}=\varepsilon_{i j k} v_{j} B_{k}=\varepsilon_{i j k} v_{j} \varepsilon_{k l m} \partial_{l} A_{m}=v_{j}\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) \partial_{l} A_{m}=v_{j}\left(\partial_{i} A_{j}-\partial_{j} A_{i}\right)
$$

Then we get

$$
m \frac{d v_{i}}{d t}=-e \frac{\partial A_{i}}{\partial x_{j}} v_{j}-e \frac{\partial A_{i}}{\partial t}+e \frac{\partial A_{j}}{\partial x_{i}} v_{j}-e \frac{\partial A_{0}}{\partial x_{i}}
$$

Or

$$
m \frac{d v_{i}}{d t}=e\left(\partial_{i} A_{j}-\partial_{j} A_{i}\right) v_{j}+e\left(-\partial_{i} A_{0}-\partial_{0} A_{i}\right)=e(\vec{E}+\vec{v} \times \vec{B})_{i}
$$

which is the correct equation of motion.
From Lagrangian define the conjugate momentum,

$$
p_{i}=\frac{\partial L}{\partial v_{i}}=m v_{i}+e A_{i}, \quad \Longrightarrow \quad v_{i}=\frac{1}{m}\left(p_{i}-e A_{i}\right)
$$

The Hamiltonian is then

$$
\begin{aligned}
H & =p_{i} v_{i}-L=p_{i} v_{i}-\frac{1}{2} m(\vec{v})^{2}-e \vec{A} \cdot \vec{v}+e A_{0} \\
& =\frac{1}{2 m}(\vec{p}-e \vec{A})^{2}+e A_{0}
\end{aligned}
$$

Note that we can obain this Hamitonian fprm the free Hamiltonian $H=\vec{p}^{2} / 2 m$ by the substition,

$$
\vec{p} \longrightarrow \vec{p}-e \vec{A}, \quad H \longrightarrow H-e A_{0}
$$

Or

$$
p^{\mu} \longrightarrow p^{\mu}-e A^{\mu}
$$

This is usally called the principle of minimal substitution.

The Schrodinger equation for a charged particle moving in the electromagnetic field is,

$$
\left[-\frac{1}{2 m}(\vec{\nabla}-i e \vec{A})^{2}+e A_{0}\right] \psi=i \frac{\partial \psi}{\partial t}
$$

This shows that it is the potentials \vec{A}, A_{0}, not the \vec{E}, \vec{B} fields show up in the Schrodinger equation. However, Schrodinger equation is not invariant under the gauge transformation,

$$
A^{\mu} \longrightarrow A^{\mu}+\partial^{\mu} \alpha, \quad \text { or } \quad \vec{A} \longrightarrow \vec{A}-\vec{\nabla} \alpha, \quad A_{0} \longrightarrow A_{0}+\partial_{0} \alpha
$$

But it turns out that we can recover the Schrodinger equation if we also change the wave function ψ by a phase,

$$
\psi \longrightarrow \psi^{\prime}=e^{-i e \alpha} \psi
$$

This can be seen as follows. Define the covariant derivative as

$$
\vec{D} \psi=(\vec{\partial}-i e \vec{A}) \psi
$$

The covariant derivative for the new fields is then,

$$
\begin{aligned}
\vec{D} \psi^{\prime} & =\left(\vec{\partial}-i e \vec{A}^{\prime}\right) \psi^{\prime}=e^{-i e \alpha}[\vec{\partial}-i e \vec{\nabla} \alpha-i e(\vec{A}-\vec{\nabla} \alpha)] \psi \\
& =e^{-i e \alpha}(\vec{D} \psi)
\end{aligned}
$$

So the covariant derivative $D \psi$ transforms by a phase in the same way as the field ψ.In other words, the covariant derivative $\vec{D}=(\vec{\partial}-i e \vec{A})$ does not change the transformation property of the object it acts on. It is then easy to see that

$$
\vec{D}^{2} \psi^{\prime}=e^{-i e \alpha}\left(\vec{D}^{2} \psi\right)
$$

For the time derivative, we have

$$
D_{0} \psi=\left(\partial_{0}+i e A_{0}\right) \psi
$$

and

$$
D_{0} \psi^{\prime}=e^{-i e \alpha}\left(\partial_{0}+i e \partial_{0} \alpha-i e A_{0}-i e \partial_{0} \alpha\right) \psi=e^{-i e \alpha} D_{0} \psi
$$

With this phase transformation, the Schrodinger equation

$$
\left[-\frac{1}{2 m}\left(\vec{\nabla}-i e \vec{A}^{\prime}\right)^{2}+e A_{0}^{\prime}\right] \psi^{\prime}=i \frac{\partial \psi^{\prime}}{\partial t}
$$

becomes

$$
e^{-i e \alpha}\left[-\frac{1}{2 m}(\vec{\nabla}-i e \vec{A})^{2}+e A_{0}\right] \psi=e^{-i e \alpha} i \frac{\partial \psi}{\partial t}
$$

After cancelling out the phase $e^{-i e \alpha}$, we get back the original Schrodinger equation. The phase transformation of the wave function is a symmetry transformation and is a local symmetry because $\alpha=\alpha(\vec{x}, t)$. The phase transformation in usually referred to as $U(1)$ transformation and we call the elecromagnetic possesses $U(1)$ local symmetry.

