Quantum Field Theory Homework set 2, Due Wed Oct 29

1. The Dirac Hamiltonian for free particle is given by

$$
H=\vec{\alpha} \cdot \vec{p}+\beta m
$$

The angular momentum operator is of the form,

$$
\vec{L}=\vec{r} \times \vec{p}
$$

(a) Compute the commutators,

$$
[\vec{L}, H]
$$

Is \vec{L} conserved?
(b) Define $\vec{S}=-\frac{i}{4}(\vec{\alpha} \times \vec{\alpha})$ and show that

$$
[\vec{L}+\vec{S}, H]=0
$$

(c) Show that \vec{S} satisfy the angular momentum algebra, i.e.

$$
\left[S_{i}, S_{j}\right]=i \varepsilon_{i j k} S_{k}
$$

and

$$
\vec{S}^{2}=\frac{3}{4}
$$

2. The Dirac spinors are of the form,

$$
u(p, s)=\sqrt{E+m}\binom{1}{\frac{\vec{\sigma} \cdot \vec{p}}{E+m}} \chi_{s}, \quad v(p, s)=\sqrt{E+m}\binom{\frac{\vec{\sigma} \cdot \vec{p}}{E+m}}{1} \chi_{s} \quad s=1,2
$$

where

$$
\chi_{1}=\binom{1}{0}, \quad \chi_{2}=\binom{0}{1}
$$

(a) Show that

$$
\begin{array}{cc}
\bar{u}(p, s) u\left(p, s^{\prime}\right)=2 m \delta_{s s^{\prime}}, & \bar{v}(p, s) v\left(p, s^{\prime}\right)=2 m \delta_{s s^{\prime}} \\
\bar{v}(p, s) u\left(p, s^{\prime}\right)=0, & \bar{u}(p, s) v\left(p, s^{\prime}\right)=0 \\
v^{\dagger}(-p, s) u\left(p, s^{\prime}\right)=0, & u^{\dagger}(p, s) v\left(-p, s^{\prime}\right)=0
\end{array}
$$

(b) Show that

$$
\begin{aligned}
& \sum_{s} u_{\alpha}(p, s) \bar{u}_{\beta}(p, s)=(\not p+m)_{\alpha \beta} \\
& \sum_{s} v_{\alpha}(p, s) \bar{v}_{\beta}(p, s)=(\not p-m)_{\alpha \beta}
\end{aligned}
$$

3. Suppose a free Dirac particle at $\mathrm{t}=0$, is described by a wavefunction,

$$
\psi(0, \vec{x})=\frac{1}{\left(\pi d^{2}\right)^{3 / 4}} \exp \left(-\frac{r^{2}}{2 d^{2}}\right) \omega
$$

where d is some constant and

$$
\omega=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

Compute the wavefunction for $t \neq 0$. What happens when d is very small.
4. Consider a 2×2 hermitian matrix defined by

$$
X=x_{0}+\vec{\sigma} \cdot \vec{x}
$$

where $\vec{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ are Pauli matrices and $\left(x_{0}, \vec{x}\right)$ are space-time coordinates.
(a) Compute the determinant of X
(b) Suppose U is a 2×2 matrix with $\operatorname{det} U=1$. Define a new 2×2 matrix by a similarity transformation,

$$
X^{\prime}=U X U^{\dagger}
$$

Show that X^{\prime} can be written as

$$
X^{\prime}=x_{0}^{\prime}+\vec{\sigma} \cdot \vec{x}^{\prime}
$$

(c) Show that the relation between $\left(x_{0}, \vec{x}\right)$ and $\left(x_{0}^{\prime}, \vec{x}^{\prime}\right)$ is a Lorentz transformation.
(d) Suppose U is of the form,

$$
U=\left(\begin{array}{cc}
e^{i \alpha} & 0 \\
0 & e^{-i \alpha}
\end{array}\right)
$$

Find the relation between $\left(x_{0}, \vec{x}\right)$ and $\left(x_{0}^{\prime}, \vec{x}^{\prime}\right)$.
5. Dirac particle in the presence of electromagnetic field satisfies the equation,

$$
\left[\gamma^{\mu}\left(i \partial_{\mu}-e A_{\mu}\right)-m\right] \psi(x)=0
$$

Or

$$
i \frac{\partial \psi}{\partial t}=[\vec{\alpha} \cdot(\vec{p}-e \vec{A})+\beta m+e \phi] \psi
$$

In the non-relativistic limit, we can write

$$
\psi(x)=e^{-i m t}\binom{u}{l}
$$

Show that the upper component satisfies the equation,

$$
i \frac{\partial u}{\partial t}=\left[\frac{1}{2 m}(\vec{p}-e \vec{A})^{2}-\frac{e}{m} \vec{\sigma} \cdot \vec{B}+e \phi\right] u
$$

For the case of weak uniform magnetic field \vec{B} we can take $\vec{A}=\frac{1}{2} \vec{B} \times \vec{r}$. Show that

$$
i \frac{\partial u}{\partial t}=\left[\frac{1}{2 m}(\vec{p})^{2}-\frac{e}{2 m}(\vec{L}+2 \vec{S}) \cdot \vec{B}\right] u
$$

6. $a_{1}^{\dagger}, a_{2}^{\dagger}, a_{1}, a_{2}$ are creation and annihilation operators satifying the commutation relations

$$
\left[a_{i}, a_{j}^{\dagger}\right]=\delta_{i j}, \quad\left[a_{i}, a_{j}\right]=0, \quad i, j=1,2
$$

Define

$$
J_{+}=a_{1}^{\dagger} a_{2}, \quad J_{-}=\left(J_{+}\right)^{\dagger}, \quad J_{3}=\frac{1}{2}\left(a_{1}^{\dagger} a_{1}-a_{2}^{\dagger} a_{2}\right)
$$

(a) Compute the commutators

$$
\left[J_{x}, J_{y}\right], \quad\left[J_{y}, J_{z}\right], \quad\left[J_{z}, J_{x}\right]
$$

where $J_{x} \equiv \frac{1}{2}\left(J_{+}+J_{-}\right), \quad J_{y} \equiv \frac{1}{2 i}\left(J_{+}-J_{-}\right)$
(b) Define the state $|0\rangle$ by

$$
a_{i}|0\rangle=0, \quad \text { for } \quad i=1,2
$$

Let the state $\left|n_{1}, n_{2}\right\rangle$ be

$$
\left|n_{1}, n_{2}\right\rangle=\frac{1}{\sqrt{n_{1}!n_{2}!}}\left(a_{1}^{\dagger}\right)^{n_{1}}\left(a_{2}^{\dagger}\right)^{n_{2}}|0\rangle
$$

Show that this state is an eigenstate of J_{3} and compute the eigenvalue.
(c) Show that this is also eigen state of $J^{2}=J_{1}^{2}+J_{2}^{2}+J_{3}^{2}$ and compute the eigenvalue.
(d) Show that the state $J_{+}\left|n_{1}, n_{2}\right\rangle$ is an eigenstate of J_{3}. What is the eigenvalue?

