
Quantum Field Theory

Ling-Fong Li

(Institute) Path Integral 1 / 25



Path integral formalism has close relationship to classical dynamics, e.g. the transition amplitude

〈f |i 〉 =
∫
[dx ] e iS/ h̄

as h̄ → 0, the trajectory with smallest S dominates, the action principle. Here uses the ordinary functions not
the operators. Later in non-Abelian gauge theory, to remove unphysical degrees of freedom can be
accomodated in the path integral formalism by imposing constraints in the integral.
Quantum Mechanics in 1-dimension
In QM, transition from |q, t〉 to 〈q ′, t ′ |, can be written as,

〈q ′t ′ |qt〉 = 〈q ′ |e−iH (t−t ′ ) |q〉

where |q〉′s are eigenstates of position operator Q in the Schrodinger picture,

Q |q〉 = q|q〉

and |q, t〉 denotes corresponding state in Heisenberg picture,

|q, t〉 = e iHt |q〉

Ipath integral formalism,this can be written as

〈q ′t ′ |qt〉 = N
∫
[dq]exp{i

∫ t ′

t
dτL(q, q̇)}
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To get this formula, divide the interval (t ′, t) into n intervals ,

δt =
t ′ − t
n

and write ,

〈q ′ |e−iH (t ′−t) |q〉 =
∫
dq1 ...dqn−1〈q ′ |e−iHδt |qn−1〉〈qn−1 |e−iHδt |qn−2〉...〈q1 |e−iHδt |q〉

If we take the Hamiltonian to be in the simple form,

H (P ,Q ) =
p2

2m
+ V (Q )

then

〈qj |H |qi 〉 = 〈qj |
p2

2m
|qi 〉+ V (

qi + qj
2

)δ(qi − qj )

=
∫
〈qj |

p2

2m
|pk 〉〈pk |qi 〉(

dpk
2π

) + V (
qi + qj
2

)
∫ dpk
2π

e ipk (qj−qi )

=
∫ dpk
2π

e ipk (qj−qi ) [
p2k
2m

+ V (
qi + qj
2

)]

where we have used
〈p|q〉 = e−ipq
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which is the momentum eigenfunction in coordinate space. Exponentiation of this infinitesmal result gives

〈qj |e−iHδt |qi 〉 '
∫ dpk
2π

e ipk (qj−qi ){1− iδt [ p
2
k

2m
+V (

qi + qj
2

)]} '
∫ dpk
2π

e ipk (qj−qi ) exp{−iδt [ p
2
k

2m
+V (

qi + qj
2

)]}

The whole transition matrix element can then be written as

〈q ′ |e−iH (t ′−t) |q〉 ∼=
∫
(
dp1
2π

)...(
dpn
2π

)
∫
dq1 ...dqn−1 exp{i

[
n

∑
i=1

pi (qi − qi−1)− (δt)H (pi ,
qi + qi+1

2
)

]
}

This can be written formally as

〈q ′ |e−iH (t ′−t) |q〉 =
∫
[
dpdq
2π

]exp{i
∫ t ′

t
dt [pq̇ −H (p, q)]}

≡ lim
n→∞

∫
(
dp1
2π

)...(
dpn
2π

)
∫
dq1 ...dqn−1exp{i∑

i=1

δt [pi (
qi − qi−1

δt
)−H (pi ,

qi + qi+1
2

)]}

If Hamiltonian depends quadractically on p, use the formula

∫ +∞

−∞

dx
2π
e−ax

2+bx =
1√
4πa

e
b2
4a

to get ∫ dpi
2π

exp[
−iδt
2m

p2i + ipi (qi − qi−1)] = (
m

2πiδt
)1/2exp[

im(qi − qi−1)2
2δt

]
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Then

〈q ′ |e−iH (t ′−t) |q〉 = lim
n→∞

(
m

2πiδt
)n/2

∫ n−1
Π
i=1
dqi exp{i

n
Σ
i=1

δt [
m
2
(
qi − qi−1

δt
)2 − V ]}

or

〈q ′t ′ |qt〉 = 〈q ′ |e−iH (t ′−t) |q〉 = N
∫
[dq] exp{i

∫ t ′

t
dτ[

m
2
q̇2 − V (q)]}

This is the path integral representation for amplitude from initial state |q, t〉 to final state 〈q ′, t ′ |. Or

〈q ′t ′ |qt〉 = N
∫
[dq] exp iS
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Green’s functions
To generalize this to field theory where we have vacuum expectation value of field operators, we consider

G (t1 , t2) = 〈0|T (QH (t1)QH (t2))|0〉

Inserting complete sets of states,

G (t1 , t2) =
∫
dqdq ′〈0|q ′, t ′〉〈q ′, t ′ |T (QH (t1)QH (t2))|q, t〉〈q, t |0〉

The matrix element
〈0|q, t〉 = φ0(q)e

−iE0 t = φ0(q, t)

is the wavefunction for ground state. Consider the case

t ′ > t1 > t2 > t ,

we can write
〈q ′, t ′ |T (QH (t1)QH (t2))|q, t〉 = 〈q ′ |e−iH (t ′−t1 )Q s e−iH (t1−t2 )Q s e−iH (t2−t) |q〉

=
∫
〈q ′ |e−iH (t ′−t1 ) |q1〉q1〈q1 |e−iH (t1−t2 ) |q2〉q2〈q2 |e−iH (t2−t) |q〉dq1dq2

=
∫
[
dpdq
2π

]q1(t1)q2(t2)exp{i
∫ t ′

t
dτ[pq̇ −H (p, q)]}

For the other time sequence
t ′ > t2 > t1 > t ,
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we get same formula, because path integral orders the time sequence automatically through the division of
time interval into small pieces. The Green’s function is then

G (t1 , t2) =
∫
dqdq ′φ0(q

′, t ′)φ∗0(q, t)
∫
[
dpdq
2π

]q1(t1)q2(t2)exp{i
∫ t ′

t
dτ[pq̇ −H (p, q)]} (1)

We remove wavefunction φ0(q, t) by the following procedure. Write

〈q ′, t ′ |θ(t1 , t2)|q, t〉 =
∫
dQdQ ′〈q ′, t ′ |Q ′,T ′〉〈Q ′,T ′ |θ(t1 , t2)|Q ,T 〉〈Q , t |q, t〉

where
θ(t1 , t2) = T (QH (t1)QH (t2))

Let |n > be eigenstate with energy En and wave function φn , i.e.,

H |n >= En |n >, 〈q|n〉 = φ∗n(q)

Then

〈q ′, t ′ |Q ′, t ′〉 = 〈q ′ |e−iH (t ′−T ′ ) |Q ′〉 = ∑
n
〈q ′ |n〉e−iEn (t ′−T ′ )〈n|Q ′〉 = ∑

n
φ∗n(q

′)φn(Q
′)e−iEn (t

′−T ′ )

To isolate the ground state wavefunction, take an "unusual limit",

lim
t ′→−i∞

〈q ′, t ′ |Q ′,T ′〉 = φ∗0(q
′)φ0(Q

′)e
−E0 |t ′ | e iE0T

′
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Similarly,
lim
t→i∞
〈Q ,T |q, t〉 = φ0(q)φ

∗
0(Q )e

−E0 |t |e−iE0T

With these we write

lim
t ′→−i∞
t→i∞

〈q ′, t ′ |θ(t1 , t2)|q, t〉 =
∫
dQdQ ′φ∗0(q

′)φ0(Q
′)〈Q ′,T ′ |θ(t1 , t2)|Q ,T 〉φ∗0(Q )φ0(q)e−E0 |t

′ |e iE0T
′
e−iE0T e−E0 |t |

= φ∗0(q
′)φ0(q)e

−E0 |t ′ |e−E0 |t |G (t1 , t2)

It is easy to see that

lim
t ′→−i∞
t→i∞

〈q ′, t ′ |q, t〉 = φ∗0(q
′)φ0(q)e

−E0 |t ′ |e−E0 |t |

Finally, the Green function can be written as,

G (t1 , t2) = lim
t ′→−i∞
t→i∞

[ 〈q ′, t ′ |T (QH (t1)QH (t2))|q, t〉
〈q ′, t ′ |q, t〉

]

= lim
t ′→−i∞
t→i∞

1
〈q ′, t ′ |q, t〉

∫ [ dpdq
2π

]
q(t1)q(t2) exp{i

∫ t ′

t
dτ[pq̇ −H (p, q)]}

This can generalized to n-point Green’s function with the result,

G (t1 , t2 , ..., tn) = 〈0|T (q(t1)q(t2)...q(tn))|0〉
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= lim
t ′→−i∞
t→i∞

1
〈q ′, t ′ |q, t〉

∫ [ dpdq
2π

]
q(t1)q(t2)...q(tn) exp{i

∫ t ′

t
dτ[pq̇ −H (p, q)]}

It is very useful to introduce generating functional for these n-point functions

W [J ] = lim
t ′→−i∞
t→i∞

1
〈q ′, t ′ |q, t〉

∫ [ dpdq
2π

]
exp{i

∫ t ′

t
dτ[pq̇ −H (p, q) + J (τ)q(τ)]}

Then

G (t1 , t2 , ..., tn) = (−i )n
δn

δJ (t1)...δJ (tn)

∣∣∣∣
J=0

The unphysical limit, t ′ → −i∞, t → i∞ , should be interpreted in term of Eudidean Green’s functions defined
by

S (n)(τ1 , τ2 , ..., τn) = i nG (n)(−iτ1 ,−iτ2 , ...,−iτn)

Generating functional for S (n) is then

WE [J ] = lim
τ′→∞
τ→−∞

∫
[dq]

1
〈q ′, t ′ |q, t〉 exp{

∫ τ′

τ
dτ”[−m

2

(
dq
dτ”

)2
− V (q) + J (τ”)q(τ”)]}

Since we can adjust the zero point of V (q) such that

m
2

(
dq
dτ

)2
+ V (q) > 0
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which provides the damping to give a converging Gaussian integral. In this form, we can see that any constant
in the path integral which is independent of q will be canceled out in the generation functional.
Example : Free particle with mass m moving in one dimension
The Hamiltonian is given by

H =
p2

2m

The action can be written in terms of the space-time intervals as

S =
∫ t ′

t
Ldt ′′ =

∫ t ′

t

m
2
q̇2dt ′′ =

m
2

n−1
∑
i=1

(
qi − qi+1

∆

)2
∆

=
m
2∆

[
(q − q1)2 + (q1 − q2)2 + ......+ (qn−1 − q ′)2

]
. (2)

where one has used n∆ = (t ′ − t) . Using this and the given integration measure, the transition amplitude can
be expressed as

〈
q ′, t ′ |q, t

〉
=
( m
2πi

) n
2
∫ n−1

∏
i=1

dqi× (3)

exp
{
im
2∆

[
(q − q1)2 + (q1 − q2)2 + ...+ (qn−1 − q ′)2

]}
The successive integrals can be calculated by using the formulae for Gaussian integrals of the form,

∫ ∞

−∞
dx exp

[
a (x − x1)2 + b (x − x2)2

]
=

√
−π

a + b
exp

[
ab
a + b

(x1 − x2)2
]

,
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so that one has

∫
dq1 exp

{
im
2∆

[
(q − q1)2 + (q1 − q2)2

]}
=

√
2πi∆
m
· 1
2
exp

[
im
2∆

(q − q2)2

2

]
∫
dq2 exp

{
im
2∆

[
(q − q2)2

2
+ (q2 − q3)2

]}
=

√
2πi∆
m
· 2
3
exp

[
im
2∆

(q − q3)2

3

]
∫
dq3 exp

{
im
2∆

[
(q − q3)2

3
+ (q3 − q4)2

]}
=

√
2πi∆
m
· 3
4
exp

[
im
2∆

(q − q4)2

4

]

so on and so forth. In this way, one obtains

〈
q ′, t ′ |q, t

〉
= lim

n→∞

( m
2πi∆

) n
2
(
2πi∆
m

) n−1
2
(
1
2
2
3

....
n − 1
n

) 1
2
exp

[
im
2n∆

(q − q ′)2
]

= lim
n→∞

( m
2πin∆

) 1
2 exp

[
im (q ′ − q)2

2 (t ′ − t)

]

=

(
m

2πi (t ′ − t)

) 1
2
exp

[
im (q ′ − q)2

2 (t ′ − t)

]
. (4)

In fact this simple case we can compute the transistion amplitude directly. Start with〈
q ′, t ′ |q, t

〉
=
〈
q ′
∣∣exp [−iH (t ′ − t)]∣∣ q〉 (5)

=
〈
q ′
∣∣ exp [−ip2

2m
(t ′ − t)

]
|q〉
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Inserting a complete set of momentum states, we get

〈
q ′, t ′ |q, t

〉
=
∫ dp
2π

〈
q ′
∣∣ exp [−ip2

2m
(t ′ − t)

]
|p〉 〈p|q〉

=
∫ dp
2π

exp
[−ip2
2m

(t ′ − t) + ip (q ′ − q)
]

, (6)

which can be integrated by using the Gaussian integral formula:

∫ ∞

−∞
dx exp

(
−ax 2 + bx

)
=

√
π

a
exp

(
b2

4a

)
. (7)

In our case, we have a = i
2m (t

′ − t) and b = i (q ′ − q) .Thus,

〈
q ′, t ′ |q, t

〉
=

√
m

2πi (t ′ − t) exp
[
im
2
(q ′ − q)2

t ′ − t

]
. (8)
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Field Theory
From quantum mechanics to field theory of a scalar field φ (x ) replace,

∞
∏
i=1
[dqidpi ] −→ [dφ(x )dπ(x )]

L(q, q̇) −→
∫
L(φ, ∂µφ)d 3x H (p, q) −→

∫
H(φ, π)d 3x

Generating functional is

W [J ] v
∫
[dφ] exp{i

∫
d 4x [L(φ, ∂µφ) + J (x )φ(x )]}

functional derivative is defined by

δF [φ (x )]
δφ (y )

= lim
ε→0

F [φ (x ) + εδ (x − y )]− F [φ (x )]
ε

This is the same as

δ

δJ (x )
J (y ) = δ4(x − y ), δ

δJ (x )

∫
d 4yJ (y ) φ (y ) = φ (x )

Then
δW [J ]
δJ (y )

= i
∫
[dφ] φ (y ) exp{i

∫
d 4x [L(φ, ∂µφ) + J (x )φ(x )]} (9)

and
δ2W [J ]

δJ (y1) δJ (y2)
= (i )2

∫
[dφ] φ (y1) φ (y2) exp{i

∫
d 4x [L(φ, ∂µφ) + J (x )φ(x )]}
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Consider λφ4 theory

L(φ) = L0(φ) + L1(φ)

L0(φ) =
1
2
(∂λφ)2 − µ2

2
φ2 , L1(φ) = −

λ

4!
φ4

Use Euclidean time the generating functional

W [J ] =
∫
[dφ] exp{−

∫
d 4x [

1
2
(

∂φ

∂τ
)2 +

1
2
(
−→5φ)2 +

µ2

2
φ2 +

λ

4!
φ4 − Jφ]}

can be written as

W [J ] =
[
exp

∫
d 4xLI

(
δ

δJ (x )

)]
W0 [J ]

We have used Eq(9) to write interaction term as functional derivative with repect to the source J (x ) .Here
W0 [J ] is the free field generating functional

W0 [J ] =
∫
[dφ] exp[− 1

2

∫
d 4xd 4yφ(x )K (x , y )φ(y ) +

∫
d 4zJ (z )φ(z )]

and

K (x , y ) = δ4(x − y )
(
− ∂2

∂τ2
−−→52 + µ2

)
. The Gaussian integral for many variables is

∫
dφ1dφ2 ...dφn exp

[
− 1
2∑
i ,j

φiKijφj +∑
k

Jkφk

]
v 1√

detK
exp

[
1
2∑
i ,j

Ji (K−1)ij Jj

]
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This can be derived as follows. For Gaussian integral in one variable, we have

I =
∫ ∞

−∞
exp

(
−ax 2 + bx

)
dx =

∫ ∞

−∞
dx exp[−a

(
x +

b
2a

)2
+
b2

4a
] =

√
π

a
exp

(
b2

4a

)
Generalization to more than one varible,

In =
∫
dx1 · · · dxn exp[−

1
2 ∑

ij

Aij xi xj +∑
j

bj xj ] =
∫
dx1 · · · dxn exp[−

1
2
(x ,Ax ) + (B , x )]

where
(x ,Ax ) = ∑

ij

Aij xi xj , (B , x ) = ∑
j

bj xj

Since A is a real symmetric matrix, it can be diagonalized by a othorgonal matrix S ,

SAS−1 = D =


d1

. . .
dn

 , or A = S−1DS = STDS

Then
(x ,Ax ) = (Sx ,DSx ) = (y ,Dy ) , (B , x ) = (B ′, y ) where y = Sx , B ′ = SB

We can then write

In =
∫
dy1 · · · dyn exp[−

1
2
(y ,Dy ) + (B ′, y )] = ∏

i

(∫ ∞

−∞
exp

(
− y

2
i

2di
+ b ′i yi

)
dyi

)

= ∏
i

[√
2π

di
exp

(
b2i
2di

)]
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Note that

∏
i

[
exp

(
b2i
2di

)]
= exp

[
∑
i

(
b ′2i
2di

)]
, ∏

i

√
2π

di
=
(2π)n/2

√
detD

=
(2π)n/2

√
detA

We can write

∑
i

(
b ′2i
2di

)
=
1
2

(
B ′,D−1B ′

)
=
1
2

(
SB ,D−1SB

)
=
1
2

(
B ,A−1B

)
The result is then

In =
(2π)n/2

√
detA

exp
[
1
2

(
B ,A−1B

)]
=
(2π)n/2

√
detA

exp
[
1
2

(
bi
(
A−1

)
ij bj

)]

Apply this to the case of scalar fields,

W0 [J ] = exp
[
1
2

∫
d 4xd 4yJ (x )4 (x , y )J (y )

]
where ∫

d 4yK (x , y )4 (y , z ) = δ4 (x − z )

4(x , y ) can be calculated by Fourier transform to give,

4(x , y ) =
∫ d 4kE
(2π)4

e ikE (x−y )

k 2E + µ2

where kE = (ik0 ,
−→
k ),the Euclidean momentum.
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We now give an alternative way to derive the same result. Define

φ (x ) =
_
φ (x ) + φc (x ) where φc (x ) =

∫
∆ (x , z ) J (z ) d 4z

then we can write

S = − 1
2

∫
d 4xd 4yφ(x )K (x , y )φ(y ) +

∫
d 4zJ (z )φ(z )

= − 1
2
{
∫
d 4xd 4y

_
φ(x )K (x , y )

_
φ(y ) +

∫
d 4xd 4y

_
φ(x )K (x , y )φc (y ) +∫

d 4xd 4yφc (x )K (x , y )
_
φ(y ) +

∫
d 4xd 4yφc (x )K (x , y )φc (y )}+

∫
d 4zJ (z )φ(z )

The first term is∫
d 4xd 4y

_
φ(x )K (x , y )φc (y ) =

∫
d 4x

_
φ(x )

∫
d 4yK (x , y )

∫
∆ (y , z ) J (z ) d 4z =

∫
d 4x

_
φ(x )J (x )

Similarly ∫
d 4xd 4yφc (x )K (x , y )

_
φ(y ) =

∫
d 4yJ (y )

_
φ(y )

∫
d 4xd 4yφc (x )K (x , y )φc (y ) =

∫
d 4xd 4yJ (x )∆ (x , y ) J (y )
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Put all these together,

S = − 1
2
{
∫
d 4xd 4y

_
φ(x )K (x , y )

_
φ(y ) +

∫
d 4x

_
φ(x )J (x ) +

∫
d 4yJ (y )

_
φ(y )

+
∫
d 4xd 4yJ (x )∆ (x , y ) J (y )}+

∫
d 4zJ (z )[

_
φ(z ) + φc (z )]

= − 1
2

∫
d 4xd 4y

_
φ(x )K (x , y )

_
φ(y ) +

1
2

∫
d 4xd 4yJ (x )∆ (x , y ) J (y )

The first term is independent of J (x ) and can be dropped. We then get the same result as given in W0 [J ] .
Perturbative expansion in power of λ gives

W [J ] = W0 [J ] {1+ λw1 [J ] + λ2w2 [J ] + ...}

where

w1 = −
1
4!
W −1
0 [J ] {

∫
d 4x

[
δ

δJ (x )

]4
}W0 [J ]

w2 = −
1

2 (4!)2
W −1
0 [J ] {

∫
d 4x

[
δ

δJ (x )

]4
}2W0 [J ]

Use explicit form for W0 [J ],

W0 [J ] = 1+
1
2

∫
d 4xd 4yJ (x )4 (x , y )J (y ) +(

1
2

)2 1
2!

∫
d 4y1d 4y2d 4y3d 4y4 [J (y1)4 (y1 , y2)J (y2)J (y3)4 (y3 , y4)J (y4)] + ...
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We get for w1 ,

w1 = −
1
4!

[∫
4(x , y1)4 (x , y2)4 (x , y3)4 (x , y4)J (y1)J (y2) J (y3)J (y4) + 3!4 (x , y1)4 (x , y2)J (y1)J (y2)4 (x , x )

]
we dropped all J independent terms, and all (xi , yi ) are integrated over. In this computation we have used the
identity,

δ

δJ (x )

∫
d 4y1J (y1) f (y1) =

∫
δ4 (x − y1) d 4y1 f (y1) = f (x )

Graphical representation for w1

The connected Green’s function is

G (n)(x1 , x2 , ...xn) =
δn lnW [J ]

δJ (x1)δJ (x2)...δJ (xn)
|J=0

Thus replacing yi by external xi , we get contributions for 4-point, 2-point functions.
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Grassmann algebra
For fermion fields, we need to use anti-commuting c-number functions.This can be realized as elements of
Grassmann algebra.
In an n-dimensional Grassmann algebra,the n generators θ1 , θ2 , θ3 , ..., θn satisfy the anti-commutation
relations,

{θi , θj } = 0 i , j = 1, 2, ..., n

and every element can be expanded in a finite series,

P (θ) = P0 + P
(1)
i1

θi1 + P
(2)
i1 i2

θi1 θi2 + ...+ Pi1 ...in θi1 ...θin

Simplest case:n=1
{θ, θ} = 0 or θ2 = 0 P (θ) = P0 + θP1

We can define the "differentiation" and "integration" as follows,

d
d θ

θ = θ

←−
d
d θ

= 1 =⇒ d
d θ
P (θ) = P1

Integration is defined in such a way that it is invariant under translation,∫
d θP (θ) =

∫
d θP (θ + α)

α is another Grassmann variable. This implies ∫
d θ = 0

We can normalize the integral
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∫
d θθ = 1

Then ∫
d θP (θ) = P1 =

d
d θ
P (θ)

Consider a change of variable

θ → θ̃ = a + bθ

Since ∫
d θ̃P

(
θ̃
)
=

d

d θ̃
P
(

θ̃
)
= P1

∫
d θP

(
θ̃
)
=
∫
d θ
[
P0 + θ̃P1

]
=
∫
d θ [P0 + (a + bθ)P1 ] = bP1

we get

∫
d θ̃P

(
θ̃
)
=
∫
d θ

(
d θ̃

d θ

)−1
P
(

θ̃ (θ)
)

The "Jacobian" is the inverse of that for c-number integration.
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Generalize to n-dimensional Grassmann algebra,

d
d θi

(θ1 , θ2 , θ3 , ..., θn) = δi1 θ2 ...θn − δi2 θ1θ3 ...θn + ...+ (−1)n−1 δinθ1θ2 ...θn−1

{d θi , d θj } = 0

∫
d θi = 0

∫
d θi θj = δij

For a change of variables of the form

θ̃i = bij θj

we have ∫
d θ̃nd θ̃n−1 ...d θ̃1P

(
θ̃
)
=
∫
d θn ...d θ1

[
det

d θ̃

d θ

]−1
P
(

θ̃ (θ)
)

Proof:
θ̃1 θ̃2 ...θ̃n = b1i1 b2i2 ...bnin θi1 ...θin

RHS is non-zero only if i1 , i2 ..., in are all different and we can write

θ̃1 θ̃2 ...θ̃n = b1i1 b2i2 ...bnin εi1 ,i2 ...,in θi1 ...θin

= (det b) θ1θ2θ3 ...θn

From the normalization condition,

1 =
∫
d θ̃nd θ̃n−1 ...d θ̃1

(
θ̃1 θ̃2 ...θ̃n

)
= (det b)

∫
d θ̃nd θ̃n−1 ...d θ̃1 (θ1θ2θ3 ...θn)

we see that
d θ̃nd θ̃n−1 ...d θ̃1 = (det b)

−1 d θ1 ...d θn
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In field theory, we need Gaussian integral of the form,

G (A) ≡
∫
d θn ...d θ1 exp

(
1
2
(θ,Aθ)

)
where (θ,Aθ) = θiAij θj

First consider n=2

A =
(

0 A12
−A12 0

)
Then

G (A) =
∫
d θ2d θ1 exp (θ1θ2A12) '

∫
d θ2d θ1 (1+ θ1θ2A12) = A12 =

√
detA

For the general n = even, we first bring the matrix A into the standard form by a unitary transformation,

UAU † = As

As =


a
(

0 1
−1 0

)
b
(

0 1
−1 0

)
. . .


This can be seen as follows. Since iA is Hermitian, it cab diagonalized by a unitary transfomation,

V (iA)V † = Ad
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where Ad is real and diagonal. The diagonal elements are solutions to the secular equation,

det |iA − λI | = 0

Since A = −AT , we have
0 = det |iA − λI |T = det |−iA − λI |

This means that if λ is a solution, -λ is also a solution and Ad is of the form,

Ad =


a
−a

b
−b

. . .


To put this matrix into the standard we use the unitary matrix

S2 =
1√
2

(
i 1
1 i

)
which has the property

S2 (−i )
(
1 0
0 −1

)
S †
2 =

(
0 1
−1 0

)
Thus we get

S (−iAd ) S † = As , where S =


S2

S2
. . .


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For arbitrary n, we get

G (A) =
∫
d θn ...d θ1 exp

(
1
2
(θ,Aθ)

)
=
√
detA n even

and for "complex" Grassmann variables

∫
d θnd

_

θnd θn−1d
_

θn−1 ...d θ1d
_

θ1 exp
(
θ,Aθ

)
= detA

For the Fermion fields, the generating functional is of the form,

W [η, η] =
∫
[dψ (x )]

[
dψ (x )

]
exp{i

∫
d 4x

[
L
(
ψ, ψ

)
+ ψη + ηψ

]
}

If L depends on ψ, ψ quadratically

L =
(
ψ,Aψ

)
then we have

W =
∫
[dψ (x )]

[
dψ (x )

]
exp{

∫
d 4xψAψ} = detA
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