

Quantum Field Theory

Ling-Fong Li

Path integral formalism has close relationship to classical dynamics, e.g. the transition amplitude

$$\langle f | i \rangle = \int [dx] e^{iS/\hbar}$$

as $\hbar \rightarrow 0$, the trajectory with smallest S dominates, the action principle. Here uses the ordinary functions not the operators. Later in non-Abelian gauge theory, to remove unphysical degrees of freedom can be accommodated in the path integral formalism by imposing constraints in the integral.

Quantum Mechanics in 1-dimension

In QM, transition from $|q, t\rangle$ to $\langle q', t'|$, can be written as,

$$\langle q' t' | q t \rangle = \langle q' | e^{-iH(t-t')} | q \rangle$$

where $|q\rangle$'s are eigenstates of position operator Q in the Schrodinger picture,

$$Q|q\rangle = q|q\rangle$$

and $|q, t\rangle$ denotes corresponding state in Heisenberg picture,

$$|q, t\rangle = e^{iHt} |q\rangle$$

In path integral formalism, this can be written as

$$\langle q' t' | q t \rangle = N \int [dq] \exp \left\{ i \int_t^{t'} d\tau L(q, \dot{q}) \right\}$$

To get this formula, divide the interval (t', t) into n intervals ,

$$\delta t = \frac{t' - t}{n}$$

and write ,

$$\langle q' | e^{-iH(t'-t)} | q \rangle = \int dq_1 \dots dq_{n-1} \langle q' | e^{-iH\delta t} | q_{n-1} \rangle \langle q_{n-1} | e^{-iH\delta t} | q_{n-2} \rangle \dots \langle q_1 | e^{-iH\delta t} | q \rangle$$

If we take the Hamiltonian to be in the simple form,

$$H(P, Q) = \frac{p^2}{2m} + V(Q)$$

then

$$\begin{aligned} \langle q_j | H | q_i \rangle &= \langle q_j | \frac{p^2}{2m} | q_i \rangle + V\left(\frac{q_i + q_j}{2}\right) \delta(q_i - q_j) \\ &= \int \langle q_j | \frac{p^2}{2m} | p_k \rangle \langle p_k | q_i \rangle \left(\frac{dp_k}{2\pi}\right) + V\left(\frac{q_i + q_j}{2}\right) \int \frac{dp_k}{2\pi} e^{ip_k(q_j - q_i)} \\ &= \int \frac{dp_k}{2\pi} e^{ip_k(q_j - q_i)} \left[\frac{p_k^2}{2m} + V\left(\frac{q_i + q_j}{2}\right)\right] \end{aligned}$$

where we have used

$$\langle p | q \rangle = e^{-ipq}$$

which is the momentum eigenfunction in coordinate space. Exponentiation of this infinitesimal result gives

$$\langle q_j | e^{-iH\delta t} | q_i \rangle \simeq \int \frac{dp_k}{2\pi} e^{ip_k(q_j - q_i)} \left\{ 1 - i\delta t \left[\frac{p_k^2}{2m} + V\left(\frac{q_i + q_j}{2}\right) \right] \right\} \simeq \int \frac{dp_k}{2\pi} e^{ip_k(q_j - q_i)} \exp\left\{-i\delta t\left[\frac{p_k^2}{2m} + V\left(\frac{q_i + q_j}{2}\right)\right]\right\}$$

The whole transition matrix element can then be written as

$$\langle q' | e^{-iH(t' - t)} | q \rangle \cong \int \left(\frac{dp_1}{2\pi} \right) \dots \left(\frac{dp_n}{2\pi} \right) \int dq_1 \dots dq_{n-1} \exp\left\{ i \left[\sum_{i=1}^n p_i(q_i - q_{i-1}) - (\delta t) H(p_i, \frac{q_i + q_{i+1}}{2}) \right] \right\}$$

This can be written formally as

$$\begin{aligned} \langle q' | e^{-iH(t' - t)} | q \rangle &= \int \left[\frac{dp dq}{2\pi} \right] \exp\left\{ i \int_t^{t'} dt [p \dot{q} - H(p, q)] \right\} \\ &\equiv \lim_{n \rightarrow \infty} \int \left(\frac{dp_1}{2\pi} \right) \dots \left(\frac{dp_n}{2\pi} \right) \int dq_1 \dots dq_{n-1} \exp\left\{ i \sum_{i=1}^n \delta t [p_i \left(\frac{q_i - q_{i-1}}{\delta t} \right) - H(p_i, \frac{q_i + q_{i+1}}{2})] \right\} \end{aligned}$$

If Hamiltonian depends quadratically on p , use the formula

$$\int_{-\infty}^{+\infty} \frac{dx}{2\pi} e^{-ax^2 + bx} = \frac{1}{\sqrt{4\pi a}} e^{\frac{b^2}{4a}}$$

to get

$$\int \frac{dp_i}{2\pi} \exp\left[\frac{-i\delta t}{2m} p_i^2 + ip_i(q_i - q_{i-1}) \right] = \left(\frac{m}{2\pi i \delta t} \right)^{1/2} \exp\left[\frac{im(q_i - q_{i-1})^2}{2\delta t} \right]$$

Then

$$\langle q' | e^{-iH(t'-t)} | q \rangle = \lim_{n \rightarrow \infty} \left(\frac{m}{2\pi i \delta t} \right)^{n/2} \int \prod_{i=1}^{n-1} dq_i \exp \left\{ i \sum_{i=1}^n \delta t \left[\frac{m}{2} \left(\frac{q_i - q_{i-1}}{\delta t} \right)^2 - V \right] \right\}$$

or

$$\langle q' t' | q t \rangle = \langle q' | e^{-iH(t'-t)} | q \rangle = N \int [dq] \exp \left\{ i \int_t^{t'} d\tau \left[\frac{m}{2} \dot{q}^2 - V(q) \right] \right\}$$

This is the path integral representation for amplitude from initial state $|q, t\rangle$ to final state $\langle q', t'|$. Or

$$\langle q' t' | q t \rangle = N \int [dq] \exp iS$$

Green's functions

To generalize this to field theory where we have vacuum expectation value of field operators, we consider

$$G(t_1, t_2) = \langle 0 | T(Q^H(t_1)Q^H(t_2)) | 0 \rangle$$

Inserting complete sets of states,

$$G(t_1, t_2) = \int dq dq' \langle 0 | q', t' \rangle \langle q', t' | T(Q^H(t_1)Q^H(t_2)) | q, t \rangle \langle q, t | 0 \rangle$$

The matrix element

$$\langle 0 | q, t \rangle = \phi_0(q) e^{-iE_0 t} = \phi_0(q, t)$$

is the wavefunction for ground state. Consider the case

$$t' > t_1 > t_2 > t,$$

we can write

$$\begin{aligned} \langle q', t' | T(Q^H(t_1)Q^H(t_2)) | q, t \rangle &= \langle q' | e^{-iH(t' - t_1)} Q^s e^{-iH(t_1 - t_2)} Q^s e^{-iH(t_2 - t)} | q \rangle \\ &= \int \langle q' | e^{-iH(t' - t_1)} | q_1 \rangle q_1 \langle q_1 | e^{-iH(t_1 - t_2)} | q_2 \rangle q_2 \langle q_2 | e^{-iH(t_2 - t)} | q \rangle dq_1 dq_2 \\ &= \int \left[\frac{dp dq}{2\pi} \right] q_1(t_1) q_2(t_2) \exp \left\{ i \int_t^{t'} d\tau [p \dot{q} - H(p, q)] \right\} \end{aligned}$$

For the other time sequence

$$t' > t_2 > t_1 > t,$$

we get same formula, because path integral orders the time sequence automatically through the division of time interval into small pieces. The Green's function is then

$$G(t_1, t_2) = \int dq dq' \phi_0(q', t') \phi_0^*(q, t) \int \left[\frac{dp dq}{2\pi} \right] q_1(t_1) q_2(t_2) \exp \left\{ i \int_t^{t'} d\tau [p \dot{q} - H(p, q)] \right\} \quad (1)$$

We remove wavefunction $\phi_0(q, t)$ by the following procedure. Write

$$\langle q', t' | \theta(t_1, t_2) | q, t \rangle = \int dQ dQ' \langle q', t' | Q', T' \rangle \langle Q', T' | \theta(t_1, t_2) | Q, T \rangle \langle Q, t | q, t \rangle$$

where

$$\theta(t_1, t_2) = T(Q^H(t_1) Q^H(t_2))$$

Let $|n\rangle$ be eigenstate with energy E_n and wave function ϕ_n , i.e.,

$$H|n\rangle = E_n|n\rangle, \quad \langle q|n\rangle = \phi_n^*(q)$$

Then

$$\langle q', t' | Q', T' \rangle = \langle q' | e^{-iH(t' - T')} | Q' \rangle = \sum_n \langle q' | n \rangle e^{-iE_n(t' - T')} \langle n | Q' \rangle = \sum_n \phi_n^*(q') \phi_n(Q') e^{-iE_n(t' - T')}$$

To isolate the ground state wavefunction, take an "unusual limit",

$$\lim_{t' \rightarrow -\infty} \langle q', t' | Q', T' \rangle = \phi_0^*(q') \phi_0(Q') e^{-E_0|t'|} e^{iE_0 T'}$$

Similarly,

$$\lim_{t \rightarrow i\infty} \langle Q, T | q, t \rangle = \phi_0(q) \phi_0^*(Q) e^{-E_0|t|} e^{-iE_0 T}$$

With these we write

$$\lim_{\substack{t' \rightarrow -i\infty \\ t \rightarrow i\infty}} \langle q', t' | \theta(t_1, t_2) | q, t \rangle = \int dQ dQ' \phi_0^*(q') \phi_0(Q') \langle Q', T' | \theta(t_1, t_2) | Q, T \rangle \phi_0^*(Q) \phi_0(q) e^{-E_0|t'|} e^{iE_0 T'} e^{-iE_0 T} e^{-E_0|t|}$$
$$= \phi_0^*(q') \phi_0(q) e^{-E_0|t'|} e^{-E_0|t|} G(t_1, t_2)$$

It is easy to see that

$$\lim_{\substack{t' \rightarrow -i\infty \\ t \rightarrow i\infty}} \langle q', t' | q, t \rangle = \phi_0^*(q') \phi_0(q) e^{-E_0|t'|} e^{-E_0|t|}$$

Finally, the Green function can be written as,

$$G(t_1, t_2) = \lim_{\substack{t' \rightarrow -i\infty \\ t \rightarrow i\infty}} \left[\frac{\langle q', t' | T(Q^H(t_1) Q^H(t_2)) | q, t \rangle}{\langle q', t' | q, t \rangle} \right]$$
$$= \lim_{\substack{t' \rightarrow -i\infty \\ t \rightarrow i\infty}} \frac{1}{\langle q', t' | q, t \rangle} \int \left[\frac{dp dq}{2\pi} \right] q(t_1) q(t_2) \exp \left\{ i \int_t^{t'} d\tau [p \dot{q} - H(p, q)] \right\}$$

This can generalized to n-point Green's function with the result,

$$G(t_1, t_2, \dots, t_n) = \langle 0 | T(q(t_1) q(t_2) \dots q(t_n)) | 0 \rangle$$

$$= \lim_{\substack{t' \rightarrow -i\infty \\ t \rightarrow i\infty}} \frac{1}{\langle q', t' | q, t \rangle} \int \left[\frac{dp dq}{2\pi} \right] q(t_1) q(t_2) \dots q(t_n) \exp \left\{ i \int_t^{t'} d\tau [p\dot{q} - H(p, q)] \right\}$$

It is very useful to introduce generating functional for these n-point functions

$$W[J] = \lim_{\substack{t' \rightarrow -i\infty \\ t \rightarrow i\infty}} \frac{1}{\langle q', t' | q, t \rangle} \int \left[\frac{dp dq}{2\pi} \right] \exp \left\{ i \int_t^{t'} d\tau [p\dot{q} - H(p, q) + J(\tau)q(\tau)] \right\}$$

Then

$$G(t_1, t_2, \dots, t_n) = (-i)^n \left. \frac{\delta^n}{\delta J(t_1) \dots \delta J(t_n)} \right|_{J=0}$$

The unphysical limit, $t' \rightarrow -i\infty, t \rightarrow i\infty$, should be interpreted in term of Eudidean Green's functions defined by

$$S^{(n)}(\tau_1, \tau_2, \dots, \tau_n) = i^n G^{(n)}(-i\tau_1, -i\tau_2, \dots, -i\tau_n)$$

Generating functional for $S^{(n)}$ is then

$$W_E[J] = \lim_{\substack{\tau' \rightarrow \infty \\ \tau \rightarrow -\infty}} \int [dq] \frac{1}{\langle q', \tau' | q, \tau \rangle} \exp \left\{ \int_{\tau}^{\tau'} d\tau'' \left[-\frac{m}{2} \left(\frac{dq}{d\tau''} \right)^2 - V(q) + J(\tau'') q(\tau'') \right] \right\}$$

Since we can adjust the zero point of $V(q)$ such that

$$\frac{m}{2} \left(\frac{dq}{d\tau} \right)^2 + V(q) > 0$$

which provides the damping to give a converging Gaussian integral. In this form, we can see that any constant in the path integral which is independent of q will be canceled out in the generation functional.

Example : Free particle with mass m moving in one dimension

The Hamiltonian is given by

$$H = \frac{p^2}{2m}$$

The action can be written in terms of the space-time intervals as

$$\begin{aligned} S &= \int_t^{t'} L dt'' = \int_t^{t'} \frac{m}{2} \dot{q}^2 dt'' = \frac{m}{2} \sum_{i=1}^{n-1} \left(\frac{q_i - q_{i+1}}{\Delta} \right)^2 \Delta \\ &= \frac{m}{2\Delta} \left[(q - q_1)^2 + (q_1 - q_2)^2 + \dots + (q_{n-1} - q')^2 \right]. \end{aligned} \quad (2)$$

where one has used $n\Delta = (t' - t)$. Using this and the given integration measure, the transition amplitude can be expressed as

$$\begin{aligned} \langle q', t' | q, t \rangle &= \left(\frac{m}{2\pi i} \right)^{\frac{n}{2}} \int \prod_{i=1}^{n-1} dq_i \times \\ &\quad \exp \left\{ \frac{im}{2\Delta} \left[(q - q_1)^2 + (q_1 - q_2)^2 + \dots + (q_{n-1} - q')^2 \right] \right\} \end{aligned} \quad (3)$$

The successive integrals can be calculated by using the formulae for Gaussian integrals of the form,

$$\int_{-\infty}^{\infty} dx \exp \left[a(x - x_1)^2 + b(x - x_2)^2 \right] = \sqrt{\frac{-\pi}{a+b}} \exp \left[\frac{ab}{a+b} (x_1 - x_2)^2 \right].$$

so that one has

$$\int dq_1 \exp \left\{ \frac{im}{2\Delta} \left[(q - q_1)^2 + (q_1 - q_2)^2 \right] \right\} = \sqrt{\frac{2\pi i \Delta}{m} \cdot \frac{1}{2}} \exp \left[\frac{im}{2\Delta} \frac{(q - q_2)^2}{2} \right]$$
$$\int dq_2 \exp \left\{ \frac{im}{2\Delta} \left[\frac{(q - q_2)^2}{2} + (q_2 - q_3)^2 \right] \right\} = \sqrt{\frac{2\pi i \Delta}{m} \cdot \frac{2}{3}} \exp \left[\frac{im}{2\Delta} \frac{(q - q_3)^2}{3} \right]$$
$$\int dq_3 \exp \left\{ \frac{im}{2\Delta} \left[\frac{(q - q_3)^2}{3} + (q_3 - q_4)^2 \right] \right\} = \sqrt{\frac{2\pi i \Delta}{m} \cdot \frac{3}{4}} \exp \left[\frac{im}{2\Delta} \frac{(q - q_4)^2}{4} \right]$$

so on and so forth. In this way, one obtains

$$\begin{aligned} \langle q', t' | q, t \rangle &= \lim_{n \rightarrow \infty} \left(\frac{m}{2\pi i \Delta} \right)^{\frac{n}{2}} \left(\frac{2\pi i \Delta}{m} \right)^{\frac{n-1}{2}} \left(\frac{1}{2} \frac{2}{3} \dots \frac{n-1}{n} \right)^{\frac{1}{2}} \exp \left[\frac{im}{2n\Delta} (q - q')^2 \right] \\ &= \lim_{n \rightarrow \infty} \left(\frac{m}{2\pi i n \Delta} \right)^{\frac{1}{2}} \exp \left[\frac{im (q' - q)^2}{2(t' - t)} \right] \\ &= \left(\frac{m}{2\pi i (t' - t)} \right)^{\frac{1}{2}} \exp \left[\frac{im (q' - q)^2}{2(t' - t)} \right]. \end{aligned} \tag{4}$$

In fact this simple case we can compute the transition amplitude directly. Start with

$$\begin{aligned} \langle q', t' | q, t \rangle &= \langle q' | \exp [-iH(t' - t)] | q \rangle \\ &= \langle q' | \exp \left[\frac{-ip^2}{2m} (t' - t) \right] | q \rangle \end{aligned} \tag{5}$$

Inserting a complete set of momentum states, we get

$$\begin{aligned}\langle q', t' | q, t \rangle &= \int \frac{dp}{2\pi} \langle q' | \exp \left[\frac{-ip^2}{2m} (t' - t) \right] | p \rangle \langle p | q \rangle \\ &= \int \frac{dp}{2\pi} \exp \left[\frac{-ip^2}{2m} (t' - t) + ip (q' - q) \right],\end{aligned}\tag{6}$$

which can be integrated by using the Gaussian integral formula:

$$\int_{-\infty}^{\infty} dx \exp(-ax^2 + bx) = \sqrt{\frac{\pi}{a}} \exp\left(\frac{b^2}{4a}\right).\tag{7}$$

In our case, we have $a = \frac{i}{2m} (t' - t)$ and $b = i (q' - q)$. Thus,

$$\langle q', t' | q, t \rangle = \sqrt{\frac{m}{2\pi i (t' - t)}} \exp \left[\frac{im}{2} \frac{(q' - q)^2}{t' - t} \right].\tag{8}$$

Field Theory

From quantum mechanics to field theory of a scalar field $\phi(x)$ replace,

$$\prod_{i=1}^{\infty} [dq_i dp_i] \longrightarrow [d\phi(x) d\pi(x)]$$

$$L(q, \dot{q}) \longrightarrow \int \mathcal{L}(\phi, \partial_{\mu}\phi) d^3x \quad H(p, q) \longrightarrow \int \mathcal{H}(\phi, \pi) d^3x$$

Generating functional is

$$W[J] \sim \int [d\phi] \exp\{i \int d^4x [\mathcal{L}(\phi, \partial_{\mu}\phi) + J(x)\phi(x)]\}$$

functional derivative is defined by

$$\frac{\delta F[\phi(x)]}{\delta \phi(y)} = \lim_{\varepsilon \rightarrow 0} \frac{F[\phi(x) + \varepsilon \delta(x-y)] - F[\phi(x)]}{\varepsilon}$$

This is the same as

$$\frac{\delta}{\delta J(x)} J(y) = \delta^4(x-y), \quad \frac{\delta}{\delta J(x)} \int d^4y J(y) \phi(y) = \phi(x)$$

Then

$$\frac{\delta W[J]}{\delta J(y)} = i \int [d\phi] \phi(y) \exp\{i \int d^4x [\mathcal{L}(\phi, \partial_{\mu}\phi) + J(x)\phi(x)]\} \quad (9)$$

and

$$\frac{\delta^2 W[J]}{\delta J(y_1) \delta J(y_2)} = (i)^2 \int [d\phi] \phi(y_1) \phi(y_2) \exp\{i \int d^4x [\mathcal{L}(\phi, \partial_{\mu}\phi) + J(x)\phi(x)]\}$$

Consider $\lambda\phi^4$ theory

$$\mathcal{L}(\phi) = \mathcal{L}_0(\phi) + \mathcal{L}_1(\phi)$$

$$\mathcal{L}_0(\phi) = \frac{1}{2}(\partial_\lambda\phi)^2 - \frac{\mu^2}{2}\phi^2, \quad \mathcal{L}_1(\phi) = -\frac{\lambda}{4!}\phi^4$$

Use Euclidean time the generating functional

$$W[J] = \int [d\phi] \exp\left\{-\int d^4x \left[\frac{1}{2}\left(\frac{\partial\phi}{\partial\tau}\right)^2 + \frac{1}{2}(\vec{\nabla}\phi)^2 + \frac{\mu^2}{2}\phi^2 + \frac{\lambda}{4!}\phi^4 - J\phi\right]\right\}$$

can be written as

$$W[J] = \left[\exp \int d^4x \mathcal{L}_I \left(\frac{\delta}{\delta J(x)} \right) \right] W_0[J]$$

We have used Eq(9) to write interaction term as functional derivative with respect to the source $J(x)$. Here $W_0[J]$ is the free field generating functional

$$W_0[J] = \int [d\phi] \exp\left[-\frac{1}{2}\int d^4x d^4y \phi(x) K(x, y) \phi(y) + \int d^4z J(z) \phi(z)\right]$$

and

$$K(x, y) = \delta^4(x - y) \left(-\frac{\partial^2}{\partial\tau^2} - \vec{\nabla}^2 + \mu^2 \right)$$

. The Gaussian integral for many variables is

$$\int d\phi_1 d\phi_2 \dots d\phi_n \exp \left[-\frac{1}{2} \sum_{i,j} \phi_i K_{ij} \phi_j + \sum_k J_k \phi_k \right] \simeq \frac{1}{\sqrt{\det K}} \exp \left[\frac{1}{2} \sum_{i,j} J_i (K^{-1})_{ij} J_j \right]$$

This can be derived as follows. For Gaussian integral in one variable, we have

$$I = \int_{-\infty}^{\infty} \exp(-ax^2 + bx) dx = \int_{-\infty}^{\infty} dx \exp\left[-a\left(x + \frac{b}{2a}\right)^2 + \frac{b^2}{4a}\right] = \sqrt{\frac{\pi}{a}} \exp\left(\frac{b^2}{4a}\right)$$

Generalization to more than one variable,

$$I_n = \int dx_1 \cdots dx_n \exp\left[-\frac{1}{2} \sum_{ij} A_{ij} x_i x_j + \sum_j b_j x_j\right] = \int dx_1 \cdots dx_n \exp\left[-\frac{1}{2} (x, Ax) + (B, x)\right]$$

where

$$(x, Ax) = \sum_{ij} A_{ij} x_i x_j, \quad (B, x) = \sum_j b_j x_j$$

Since A is a real symmetric matrix, it can be diagonalized by an orthogonal matrix S ,

$$SAS^{-1} = D = \begin{pmatrix} d_1 & & & \\ & \ddots & & \\ & & & d_n \end{pmatrix}, \quad \text{or} \quad A = S^{-1}DS = S^T DS$$

Then

$$(x, Ax) = (Sx, DSx) = (y, Dy), \quad (B, x) = (B', y) \quad \text{where} \quad y = Sx, \quad B' = SB$$

We can then write

$$\begin{aligned} I_n &= \int dy_1 \cdots dy_n \exp\left[-\frac{1}{2} (y, Dy) + (B', y)\right] = \prod_i \left(\int_{-\infty}^{\infty} \exp\left(-\frac{y_i^2}{2d_i} + b'_i y_i\right) dy_i \right) \\ &= \prod_i \left[\sqrt{\frac{2\pi}{d_i}} \exp\left(\frac{b_i^2}{2d_i}\right) \right] \end{aligned}$$

Note that

$$\prod_i \left[\exp \left(\frac{b_i^2}{2d_i} \right) \right] = \exp \left[\sum_i \left(\frac{b_i'^2}{2d_i} \right) \right], \quad \prod_i \sqrt{\frac{2\pi}{d_i}} = \frac{(2\pi)^{n/2}}{\sqrt{\det A}} = \frac{(2\pi)^{n/2}}{\sqrt{\det A}}$$

We can write

$$\sum_i \left(\frac{b_i'^2}{2d_i} \right) = \frac{1}{2} (B', D^{-1}B') = \frac{1}{2} (SB, D^{-1}SB) = \frac{1}{2} (B, A^{-1}B)$$

The result is then

$$I_n = \frac{(2\pi)^{n/2}}{\sqrt{\det A}} \exp \left[\frac{1}{2} (B, A^{-1}B) \right] = \frac{(2\pi)^{n/2}}{\sqrt{\det A}} \exp \left[\frac{1}{2} \left(b_i (A^{-1})_{ij} b_j \right) \right]$$

Apply this to the case of scalar fields,

$$W_0 [J] = \exp \left[\frac{1}{2} \int d^4x d^4y J(x) \Delta(x, y) J(y) \right]$$

where

$$\int d^4y K(x, y) \Delta(y, z) = \delta^4(x - z)$$

$\Delta(x, y)$ can be calculated by Fourier transform to give,

$$\Delta(x, y) = \int \frac{d^4 k_E}{(2\pi)^4} \frac{e^{ik_E(x-y)}}{k_E^2 + \mu^2}$$

where $k_E = (ik_0, \vec{k})$, the Euclidean momentum.

We now give an alternative way to derive the same result. Define

$$\phi(x) = \bar{\phi}(x) + \phi_c(x) \quad \text{where} \quad \phi_c(x) = \int \Delta(x, z) J(z) d^4 z$$

then we can write

$$\begin{aligned} S &= -\frac{1}{2} \int d^4 x d^4 y \phi(x) K(x, y) \phi(y) + \int d^4 z J(z) \phi(z) \\ &= -\frac{1}{2} \left\{ \int d^4 x d^4 y \bar{\phi}(x) K(x, y) \bar{\phi}(y) + \int d^4 x d^4 y \bar{\phi}(x) K(x, y) \phi_c(y) + \right. \\ &\quad \left. \int d^4 x d^4 y \phi_c(x) K(x, y) \bar{\phi}(y) + \int d^4 x d^4 y \phi_c(x) K(x, y) \phi_c(y) \right\} + \int d^4 z J(z) \phi(z) \end{aligned}$$

The first term is

$$\int d^4 x d^4 y \bar{\phi}(x) K(x, y) \phi_c(y) = \int d^4 x \bar{\phi}(x) \int d^4 y K(x, y) \int \Delta(y, z) J(z) d^4 z = \int d^4 x \bar{\phi}(x) J(x)$$

Similarly

$$\int d^4 x d^4 y \phi_c(x) K(x, y) \bar{\phi}(y) = \int d^4 y J(y) \bar{\phi}(y)$$

$$\int d^4 x d^4 y \phi_c(x) K(x, y) \phi_c(y) = \int d^4 x d^4 y J(x) \Delta(x, y) J(y)$$

Put all these together,

$$\begin{aligned} S &= -\frac{1}{2} \left\{ \int d^4x d^4y \bar{\phi}(x) K(x, y) \bar{\phi}(y) + \int d^4x \bar{\phi}(x) J(x) + \int d^4y J(y) \bar{\phi}(y) \right. \\ &\quad \left. + \int d^4x d^4y J(x) \Delta(x, y) J(y) \right\} + \int d^4z J(z) [\bar{\phi}(z) + \phi_c(z)] \\ &= -\frac{1}{2} \int d^4x d^4y \bar{\phi}(x) K(x, y) \bar{\phi}(y) + \frac{1}{2} \int d^4x d^4y J(x) \Delta(x, y) J(y) \end{aligned}$$

The first term is independent of $J(x)$ and can be dropped. We then get the same result as given in $W_0[J]$. Perturbative expansion in power of λ gives

$$W[J] = W_0[J] \{1 + \lambda w_1[J] + \lambda^2 w_2[J] + \dots\}$$

where

$$w_1 = -\frac{1}{4!} W_0^{-1}[J] \left\{ \int d^4x \left[\frac{\delta}{\delta J(x)} \right]^4 \right\} W_0[J]$$

$$w_2 = -\frac{1}{2(4!)^2} W_0^{-1}[J] \left\{ \int d^4x \left[\frac{\delta}{\delta J(x)} \right]^4 \right\}^2 W_0[J]$$

Use explicit form for $W_0[J]$,

$$\begin{aligned} W_0[J] &= 1 + \frac{1}{2} \int d^4x d^4y J(x) \Delta(x, y) J(y) + \\ &\quad \left(\frac{1}{2} \right)^2 \frac{1}{2!} \int d^4y_1 d^4y_2 d^4y_3 d^4y_4 [J(y_1) \Delta(y_1, y_2) J(y_2) J(y_3) \Delta(y_3, y_4) J(y_4)] + \dots \end{aligned}$$

We get for w_1 ,

$$w_1 = -\frac{1}{4!} \left[\int \Delta(x, y_1) \Delta(x, y_2) \Delta(x, y_3) \Delta(x, y_4) J(y_1) J(y_2) J(y_3) J(y_4) + 3! \Delta(x, y_1) \Delta(x, y_2) J(y_1) J(y_2) \Delta(x, y_3) \Delta(x, y_4) \right]$$

we dropped all J independent terms, and all (x_i, y_i) are integrated over. In this computation we have used the identity,

$$\frac{\delta}{\delta J(x)} \int d^4 y_1 J(y_1) f(y_1) = \int \delta^4(x - y_1) d^4 y_1 f(y_1) = f(x)$$

Graphical representation for w_1



The connected Green's function is

$$G^{(n)}(x_1, x_2, \dots, x_n) = \frac{\delta^n \ln W[J]}{\delta J(x_1) \delta J(x_2) \dots \delta J(x_n)}|_{J=0}$$

Thus replacing y_i by external x_i , we get contributions for 4-point, 2-point functions.

Grassmann algebra

For fermion fields, we need to use anti-commuting c-number functions. This can be realized as elements of Grassmann algebra.

In an n -dimensional Grassmann algebra, the n generators $\theta_1, \theta_2, \theta_3, \dots, \theta_n$ satisfy the anti-commutation relations,

$$\{\theta_i, \theta_j\} = 0 \quad i, j = 1, 2, \dots, n$$

and every element can be expanded in a finite series,

$$P(\theta) = P_0 + P_{i_1}^{(1)} \theta_{i_1} + P_{i_1 i_2}^{(2)} \theta_{i_1} \theta_{i_2} + \dots + P_{i_1 \dots i_n} \theta_{i_1} \dots \theta_{i_n}$$

Simplest case: $n=1$

$$\{\theta, \theta\} = 0 \quad \text{or} \quad \theta^2 = 0 \quad P(\theta) = P_0 + \theta P_1$$

We can define the "differentiation" and "integration" as follows,

$$\frac{d}{d\theta} \theta = \theta \frac{\overset{\leftarrow}{d}}{d\theta} = 1 \quad \Rightarrow \frac{d}{d\theta} P(\theta) = P_1$$

Integration is defined in such a way that it is invariant under translation,

$$\int d\theta P(\theta) = \int d\theta P(\theta + \alpha)$$

α is another Grassmann variable. This implies

$$\int d\theta = 0$$

We can normalize the integral

$$\int d\theta \theta = 1$$

Then

$$\int d\theta P(\theta) = P_1 = \frac{d}{d\theta} P(\theta)$$

Consider a change of variable

$$\theta \rightarrow \tilde{\theta} = a + b\theta$$

Since

$$\int d\tilde{\theta} P(\tilde{\theta}) = \frac{d}{d\tilde{\theta}} P(\tilde{\theta}) = P_1$$

$$\int d\theta P(\tilde{\theta}) = \int d\theta [P_0 + \tilde{\theta} P_1] = \int d\theta [P_0 + (a + b\theta) P_1] = bP_1$$

we get

$$\int d\tilde{\theta} P(\tilde{\theta}) = \int d\theta \left(\frac{d\tilde{\theta}}{d\theta} \right)^{-1} P(\tilde{\theta}(\theta))$$

The "Jacobian" is the inverse of that for c-number integration.

Generalize to n-dimensional Grassmann algebra,

$$\frac{d}{d\theta_i} (\theta_1, \theta_2, \theta_3, \dots, \theta_n) = \delta_{i1} \theta_2 \dots \theta_n - \delta_{i2} \theta_1 \theta_3 \dots \theta_n + \dots + (-1)^{n-1} \delta_{in} \theta_1 \theta_2 \dots \theta_{n-1}$$

$$\{d\theta_i, d\theta_j\} = 0$$

$$\int d\theta_i = 0 \quad \int d\theta_i \theta_j = \delta_{ij}$$

For a change of variables of the form

$$\tilde{\theta}_i = b_{ij} \theta_j$$

we have

$$\int d\tilde{\theta}_n d\tilde{\theta}_{n-1} \dots d\tilde{\theta}_1 P(\tilde{\theta}) = \int d\theta_n \dots d\theta_1 \left[\det \frac{d\tilde{\theta}}{d\theta} \right]^{-1} P(\tilde{\theta}(\theta))$$

Proof:

$$\tilde{\theta}_1 \tilde{\theta}_2 \dots \tilde{\theta}_n = b_{1i_1} b_{2i_2} \dots b_{ni_n} \theta_{i_1} \dots \theta_{i_n}$$

RHS is non-zero only if i_1, i_2, \dots, i_n are all different and we can write

$$\begin{aligned} \tilde{\theta}_1 \tilde{\theta}_2 \dots \tilde{\theta}_n &= b_{1i_1} b_{2i_2} \dots b_{ni_n} \epsilon_{i_1, i_2, \dots, i_n} \theta_{i_1} \dots \theta_{i_n} \\ &= (\det b) \theta_1 \theta_2 \theta_3 \dots \theta_n \end{aligned}$$

From the normalization condition,

$$1 = \int d\tilde{\theta}_n d\tilde{\theta}_{n-1} \dots d\tilde{\theta}_1 (\tilde{\theta}_1 \tilde{\theta}_2 \dots \tilde{\theta}_n) = (\det b) \int d\theta_n d\theta_{n-1} \dots d\theta_1 (\theta_1 \theta_2 \theta_3 \dots \theta_n)$$

we see that

$$d\tilde{\theta}_n d\tilde{\theta}_{n-1} \dots d\tilde{\theta}_1 = (\det b)^{-1} d\theta_1 \dots d\theta_n$$

In field theory, we need Gaussian integral of the form,

$$G(A) \equiv \int d\theta_n \dots d\theta_1 \exp \left(\frac{1}{2} (\theta, A\theta) \right) \quad \text{where } (\theta, A\theta) = \theta_i A_{ij} \theta_j$$

First consider $n=2$

$$A = \begin{pmatrix} 0 & A_{12} \\ -A_{12} & 0 \end{pmatrix}$$

Then

$$G(A) = \int d\theta_2 d\theta_1 \exp(\theta_1 \theta_2 A_{12}) \simeq \int d\theta_2 d\theta_1 (1 + \theta_1 \theta_2 A_{12}) = A_{12} = \sqrt{\det A}$$

For the general $n = \text{even}$, we first bring the matrix A into the standard form by a unitary transformation,

$$U A U^\dagger = A_s$$

$$A_s = \begin{bmatrix} a \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} & & & \\ & b \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} & & \\ & & \ddots & \\ & & & \ddots \end{bmatrix}$$

This can be seen as follows. Since iA is Hermitian, it can be diagonalized by a unitary transformation,

$$V(iA)V^\dagger = A_d$$

where A_d is real and diagonal. The diagonal elements are solutions to the secular equation,

$$\det |iA - \lambda I| = 0$$

Since $A = -A^T$, we have

$$0 = \det |iA - \lambda I|^T = \det |-iA - \lambda I|$$

This means that if λ is a solution, $-\lambda$ is also a solution and A_d is of the form,

$$A_d = \begin{pmatrix} a & & & & \\ & -a & & & \\ & & b & & \\ & & & -b & \\ & & & & \ddots \end{pmatrix}$$

To put this matrix into the standard we use the unitary matrix

$$S_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} i & 1 \\ 1 & i \end{pmatrix}$$

which has the property

$$S_2 (-i) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} S_2^\dagger = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Thus we get

$$S (-iA_d) S^\dagger = A_s, \quad \text{where} \quad S = \begin{pmatrix} S_2 & & & \\ & S_2 & & \\ & & \ddots & \\ & & & S_2 \end{pmatrix}$$

For arbitrary n , we get

$$G(A) = \int d\theta_n \dots d\theta_1 \exp\left(\frac{1}{2}(\theta, A\theta)\right) = \sqrt{\det A} \quad n \text{ even}$$

and for "complex" Grassmann variables

$$\int d\theta_n d\bar{\theta}_n d\theta_{n-1} d\bar{\theta}_{n-1} \dots d\theta_1 d\bar{\theta}_1 \exp(\bar{\theta}, A\theta) = \det A$$

For the Fermion fields, the generating functional is of the form,

$$W[\eta, \bar{\eta}] = \int [d\psi(x)] [d\bar{\psi}(x)] \exp\{i \int d^4x [\mathcal{L}(\psi, \bar{\psi}) + \bar{\psi}\eta + \bar{\eta}\psi]\}$$

If \mathcal{L} depends on $\psi, \bar{\psi}$ quadratically

$$\mathcal{L} = (\bar{\psi}, A\psi)$$

then we have

$$W = \int [d\psi(x)] [d\bar{\psi}(x)] \exp\{\int d^4x \bar{\psi} A\psi\} = \det A$$