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Path integral formalism has close relationship to classical dynamics, e.g. the transition amplitude
(F1i) :/[dx] &S/

as h — 0, the trajectory with smallest S dominates, the action principle. Here uses the ordinary functions not
the operators. Later in non-Abelian gauge theory, to remove unphysical degrees of freedom can be
accomodated in the path integral formalism by imposing constraints in the integral.

Quantum Mechanics in 1-dimension

In QM, transition from |g, t) to (q’, t'|, can be written as,

(q/t/\qt> _ (q/lefiH(t—r’) lq)
where |q)’s are eigenstates of position operator Q in the Schrodinger picture,

Qlg) = qlq)

and |q, t) denotes corresponding state in Heisenberg picture,

g, t) = e™|q)

Ipath integral formalism,this can be written as

(@¢lat) = N [ldglewsli [ drL(a.a)}
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To get this formula, divide the interval (t/,t) into n intervals ,

t—t
n

ot =

and write ,

—iH(t - ' —i —i —i
(q'|leH ”Iq>:/dq1---dqn71<q’\e H0 gn1) (gn-1]e "™ qn2)...(q1|e~"*"|q)

If we take the Hamiltonian to be in the simple form,

p?
H(P, Q)= omt v(Q)

then
WlHla) = (a2 la) + V(T L )s(q - q)
= [l bp0) (el (225 v (B [ B gty
_ /%emk(qﬁq")[%‘FV(W)]
where we have used )
(plq) = e
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which is the momentum eigenfunction in coordinate space. Exponentiation of this infinitesmal result gives

; d, ioL(q:i—a; ; d i
<qj‘eﬂ/-m‘q’_>:/%ew(qﬁ%){ ,M[Pk yv(ita +qJ N} = / Pk gipk(4j=41) ey { — ,M[Pk yv(dta +a

2
The whole transition matrix element can then be written as

n

—iH(t'— g d n i+ qi
(e 0q) = [(P2).(52) [ da..dan- 1exp{:[ pila — ) — (D) H(py, LT |y
v i=1

This can be written formally as

(q'le~ " =0|q) = /[dgiq]exp{i[t dt[pg — H(p. )]}

—(qi-1 ) = Hipr, qi + qi+1 N

. d, dpn
= lim (ﬂ) p /dq1 .dqn_1exp{i Zét[p, 5 3

n—co 27

If Hamiltonian depends quadractically on p, use the formula

/’+0o ﬁe—ax2+bx — 1 e—ﬁ%
—eo 27T 4mta
to get
[ 2t cxp 52t 2 4 il — 1)) = () 2expl TG
2 ! NG — g 2midt 26t
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Then

qi —gi-1 >2 _ V]}

—iH( v —t)
(d'le Jlg) = lim ( 5

nHoo 27r/<5

n/2 nt . iy m
/ L da;expfi X 5t[=(
or

(a'tlat) = (@l ™ o) = [laq)expi [ del - V(a)))

,t) to final state (q¢’, t'|. Or

This is the path integral representation for amplitude from initial state

(q't'|qt) = N/[dq] expiS
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Green’s functions
To generalize this to field theory where we have vacuum expectation value of field operators, we consider

G(t1,t2) = (0] T(Q" (1) Q" (2))0)

Inserting complete sets of states,

G(t1,t2) = [ dadg' (014, ¢)(a',¢1T(Q" (1)Q" (&)l )

)

The matrix element )
(0lq. t) = ¢o(q)e ™" = ¢y (g, )

is the wavefunction for ground state. Consider the case
t'>t>t>t

we can write

(@ EIT(Q"(8)Q" (12))]a, 1) = (/|- @oe~H(t1t2) Qe 0 g)
= [(@le 5 ) qr e g3) g2 gzl 20 q) dar e
' dpd St
= [ (e ax(w)expli [ drlpa—H(p a)]}

For the other time sequence
t'>th >t >t
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we get same formula, because path integral orders the time sequence automatically through the division of
time interval into small pieces. The Green's function is then

G(t1.t2) = [ dada'y(d'.€)95(0.) [ (B () ar(to)ewwli [ dlpa— H(p. )]}

We remove wavefunction ¢,(q, t) by the following procedure. Write

(¢, t16(tr, t2)|q. t) = /deQ’@’, Y1Q TNHQ, T'l6(t, 22)|Q. THQ. tlq. t)

where

0(t1, t2) = T(Q"(11)Q" (1))

Let |n > be eigenstate with energy E, and wave function ¢,,, i.e.,
Hln>= Ealn > (qln) = ¢;(q)
Then

(@ 1]Q ') = (q'|le™-T1Q") = Y(q'[n)e =T (n] Q") = Y% ('), (Q)e En¥'-T")

n n

To isolate the ground state wavefunction, take an "unusual limit",

lim (4, ¢]Q" ') = 95 (a)po(@)e 0™

t/ ——ico
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Similarly,
lim (Q, Tlg,t) = ¢(q)95(Q)e0lle 50T

With these we write

t/——ico
t—ico

= 5(d')go(q)e B0l le Bl G (11, 1)
It is easy to see that
lim (q',t'|q,t) = ¢3(q" )y (q)e Pl e Foll

t/——ioo

t—ioco

Finally, the Green function can be written as,

[ TR (1) QY (12))]g, )
G(tl,t2)= lim |: (q’,t’lq,t) :|

t/——jco
t—ico

- i’"wm / [%] a(t)alt) exoli [ * delpa— Hp @)}

t—ioco

This can generalized to n-point Green's function with the result,

G(t1,t2, o ta) = (0] T (q(t1)q(t2)---q(ta))10)
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— im s | [%] a()a(ts)atn) exoi [ dtloq — H(p. )]}

t—ico

It is very useful to introduce generating functional for these n-point functions

. 1 dpdq
WU i o | (5] wt [ deoa=te.0 o)
Then
N
Cltutartn) = (50" G705 5500 |,

The unphysical limit, t' — —jco, t — ico , should be interpreted in term of Eudidean Green's functions defined
by

S(")(Tl,rz, ey Tn) = i”G(")(firl, —iT, ey —iTh)

Generating functional for S is then

we ] = tim [ ld0) oz ee{ [ 07 (= () = V(@) +()a( )]

T——00

Since we can adjust the zero point of V(q) such that

m ([ dq 2
?(E) +V(q)>0
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which provides the damping to give a converging Gaussian integral. In this form, we can see that any constant
in the path integral which is independent of g will be canceled out in the generation functional.
Example : Free particle with mass m moving in one dimension

The Hamiltonian is given by
2
_ P

2m
The action can be written in terms of the space-time intervals as

o

- % [(q — )2+ (g1 — G2)> + o+ (Got — q;>2] . o

where one has used nA = (t' — t). Using this and the given integration measure, the transition amplitude can
be expressed as

(@ fla.c) 2’7nz g/qul o
P { 24 [( —a)?+ (01— @)+ o+ (@1 — q')z} }

The successive integrals can be calculated by using the formulae for Gaussian integrals of the form,

b —7T ab
/700 dx exp [a (x 7x1)2 + b(x7x2)2} =\Vits exp [m (x1 7X2>2} ,
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so that one has

g im i
/dq1 EXP{E [(qﬂh)zﬂql fqz)z}} =\ e
. 2 A . 2
: im | (q—g2) _oa2| L /2mia 2 im (q—gs)
/dqzexp{m[ 5 t(a %)}}7 3P SA T
. 2 - . 2
im | (g —q3) el j2mia 3 im (q—qs)
./dq3exp{2A[ 3 flema H_ R by —
so on and so forth. In this way, one obtains
2 fomia\ "7 (12 1\? '
;o . m 7 TTi 12 n— im N2
(. ¢la.1) nlinm(zmA) ( m ) (23"" n > exp[znA(q q)]
1 . 2
) m N3z im(q' —q)
= |
nflo(zmnA> exp{ 2(t —t) }
1
m 2 im(q' —q)°
S — —2 U, 4
(27ri(t’—t)) eXp[ 2(t"—t) )

In fact this simple case we can compute the transistion amplitude directly. Start with

(d'.t'q,t) = (q' [exp [=iH (' = 1)]| 9) (5)

= (alew [ 52 (-0 la)
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Inserting a complete set of momentum states, we get

(d"

= [ 22 @lew [52 = 0] I ol

—ip?
= Eew[gz (t’*tpr(q’fq)]v (6)

which can be integrated by using the Gaussian integral formula:

/j; dxexp (—ax? + bx) = \/gexp (i’:) @)

In our case, we have a = 5= (t' —t) and b =i (q’' — q).Thus,

. ;N2
(d'.t']q, 1) = ﬁexp {%%} : (8)
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Field Theory
From quantum mechanics to field theory of a scalar field ¢ (x) replace,

e

[daidpi] — [dp(x)dmt(x)]

I
-

L(a.4) — ./ L@ dx  Hpa) — [Hig.mF
Generating functional is
o [ 1dglexpli [ d*x(£(9.09) + S()p(x)]}
functional derivative is defined by

SFIpG0l _ FIp0) -+ (x—y)] ~ Fp(x)
3¢ (y) e—0 €

This is the same as

ML(X)JM ==, M;;(x)/d“yf(y)qb(y):wx)
Then §W[J]
5Ily) i [ 14910 (v)expli [ d*xIL(9.2,0) + I(x)9(x)]} 9)
and U
2w J - o
5T 00) 80 () () / [d4>}4>(y1)¢(yz)exp{r/d x[L(¢, du) + J(x)P(x)]}
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Consider A¢* theory

1
Lo@) = 5092~ 9% Li9) =5
Use Euclidean time the generating functional
1= 2 A
Wi = [lapleet [ a2 (X7 4 2T+ g2+ gt~ ugl)

can be written as

W] = [exp/d‘*xz, (5%@))] Wo U]

We have used Eq(9) to write interaction term as functional derivative with repect to the source J (x) .Here
Wy [J] is the free field generating functional

= [laglexpl—5 [ d*xd'vg()K (x990 + [ d*2)(2)(2)]

and
2

K(X,y) :(54(X7y) (736? 7$2+ﬂ2)

. The Gaussian integral for many variables is

detK

1 1 1 _
/d¢‘1d¢z---d¢n exp {*E;J_‘P;Ku%*;h%} - \/jeXP E;J.J’(K 1)1/4}
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This can be derived as follows. For Gaussian integral in one variable, we have

) ) b 2 b2 b2
| = /Hwexp (—ax? + bx) dx = [w dx exp[—a <X+ Z) + E] = gexp (E)

Generalization to more than one varible,

Iy = /dx1 e dx, exp[—% Y Ajxixi + Y bix] = /dx1 eedx, exp[—% (x, Ax) + (B, x)]
. 7 - .

where

(x, Ax) ZA,JX,XJ, (B,x) = Ebjxj'
J
Since A is a real symmetric matrix, it can be diagonalized by a othorgonal matrix S,

d
SAST =D = . ., or  A=ST'DS=STDS
d,
Then
(x, Ax) = (5x, DSx) = (y, Dy), (B,x)=(B,y) where y=Sx, B =SB

We can then write

P /dyl...dynexp[fé(y,Dy)+(B’,y)]:H(/WQXP< 2 +by’)dy">

e (5 o

(Institute) Path Integral
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Note that

We can write

1 —1 _1 -1
=3 (SB,D SB) =3 (B,A B)
The result is then

(271)"/2
I, =

- ool 6.a0)] = oo 5 (54,0

Apply this to the case of scalar fields,

where

Wo [J] = exp E [ atxatyi o (x,y).](y)]

[d'yK(xip) B (y2) =8 (x=2)
A(x,y) can be calculated by Fourier transform to give,

d4 ke etke(x=y)

A(va) :/ E4 2 2
(271.') kE +up

. - .

where kg = (iko, k ),the Euclidean momentum.
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We now give an alternative way to derive the same result. Define

P =000+ () where 9. (x)= [B(x,2)J(2)d"
then we can write
s = 77/d4xd4yzp +/d4zJ
= [ @B )B) + [ dxd v plOK (x, ). (r) +
[ dxd'yo 0K ()90 + [ d*xa'yg (K (x,y) (0} + [ d2)(2)p(2)

The first term is
/d4xd4yq@(x) (x,y)p (y /d4x¢ /d4yK x,y) /A y.z)J(2)d*z = /dAXzf(x)J(x)

Similarly

[ dixdtyg (K (x.)pr) = [ dyd (1) p(y)

[ dtxatyp K () () = [ dixdyd ()8 (x,5) I ()
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Put all these together,

= [ dYBOK B + [ )
+/d4xd4yJ( VA (x }+/d4zJ
=5 [ axaty00K (. ply

/dAyJ
(2)+¢.(2)]
5 [dxd ()AL S ()
The first term is independent of J (x) and can be dropped. We then get the same result as given in Wy [J]
Perturbative expansion in power of A gives

W [J) = Wo ] {1+ Awy [J] + A2w; [J] + ...}
where

wy = 7%W071 ] {/dAX [5J(EX)]4}WO V]

Use explicit form for W [J]

WolJ] =

1+ % / dAXdAyJ(X) A(x,y)d(y)+

(3) 3 ] e'natnatndtilion) & 0a a0 505) & (3,30 0w)] +

(Institute)
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We get for wy,

,% [/A(x,h) A (x,y2) D (x,y3) D (x,ya)d(v1)d (v2) J(y3)d(ya) + 31D (x, 1) O (x, y2) I (y1)d (v2) D (x,

we dropped all J independent terms, and all (x;, y;) are integrated over. In this computation we have used the
identity,

557 [ @I 7 ) = [ =) dtf ) = £ ()

Graphical representation for wq
¥ Y3

Y1 X Y2
¥ Y

The connected Green's function is

5" W [J]

(n) - omWUl
G e 0) = STE ST i) P

Thus replacing y; by external x;, we get contributions for 4-point, 2-point functions.
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Grassmann algebra

For fermion fields, we need to use anti-commuting c-number functions.This can be realized as elements of
Grassmann algebra.

In an n-dimensional Grassmann algebra,the n generators 61, 05, 03, ..., 6, satisfy the anti-commutation
relations,

{Gi,gj}:(] i,j:l,2,...,n
and every element can be expanded in a finite series,

P(8) = Po+ P10y + P2 050, + ...+ Py _in0i .03,

Simplest case:n=1

{6,6=0 or =0 P(O)=Py+6P

We can define the "differentiation" and "integration" as follows,

.
d d d
%9 9% 1 = dGP(G) =t

Integration is defined in such a way that it is invariant under translation,

/deP 0) = /deP (6+a)

« is another Grassmann variable. This implies

/dG:O

We can normalize the integral
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Then
/deP(e) —p = Lpp
T
Consider a change of variable
0—0=a+bo
Since
/déP (2) = 4p (@) =,
: do
/' dop (0) = /de [Po+8P)] = / d0 [Py + (a+ b8) Py] = bP;
we get

/déP () = / do (%g)il P(ace)

The "Jacobian" is the inverse of that for c-number integration.

(Institute) Path Integral
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Generalize to n-dimensional Grassmann algebra,

d .
—— (01,602,603, ...,0,) = 6, 05...0, = 8;,0103..0, + ... + (—1) 1 5i00165...0, 1

do;
{d6;,d6;} =0
/de,» =0 /defej =5
For a change of variables of the form
0 = byf
we have
J S do s
/d@nden,l...delP (0) = /dG,,...dGl [det% P(a0)

Proof:

616,...0, = by, bajy ...byiy 8y .01,

RHS is non-zero only if iy, iz..., I, are all different and we can write

n

9192...9,7 = bl"l b2i2"'bﬂfneilyfz---,inefl"'97'
= (det b) 016265...60,

From the normalization condition,
1 :/dg,,dg,,,l...dgl (18..,) = (detb) /dénd‘én,l...dél (6:16,65...6,)

we see that o ~
d6,d0, 1...d6; = (det b) ™' d6;...d6,
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In field theory, we need Gaussian integral of the form,

G (A) z/ d6,...d6) exp (%(9,A9)> where (0, A0) = 6,A;6);

First consider n=2
_ 0 A12
(A )

G (A) = / 6,61 exp (6,0, A12) ~ / d0,d0; (1+0,0,A1) = App = Vdet A

Then

For the general n = even, we first bring the matrix A into the standard form by a unitary transformation,

UAUT = A

This can be seen as follows. Since iA is Hermitian, it cab diagonalized by a unitary transfomation,

vV (iA) Vi = A,
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where Ay is real and diagonal. The diagonal elements are solutions to the secular equation,

det|[iA—Al| =0
Since A= —AT, we have
0 = det |[iA — Al|" = det|—iA — Al

This means that if A is a solution, -A is also a solution and Ay is of the form,

which has the property

Thus we get
. + S
S (—iAg) ST = As, where S=

(Institute) Path Integral
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For arbitrary n, we get
G(A) = / d6,...d6, exp (% (9,A9)> —VdetA  neven
and for "complex" Grassmann variables
/d@nd@nden,ld@n,l...deldél exp (0, Af) = det A
For the Fermion fields, the generating functional is of the form,
W i.7] = [ [ () [0 ()] exp{i [ ox [£ (9. 9) + By + 9]}
If £ depends on 1,9 quadratically

L= (p Ap)

then we have

W= / [dy (x)] [dF (x)] exp{/d“xwlp} = detA
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