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Fundamental Interactions
1 Strong Interaction�Quantum Chromodynamics (QCD)
Local symmetry( Gauge Theory) based on SU (3) color symmetry

2 Electromagnetic Interaction�Quantum Electrodynamics (QED)
Local symmetry based on U (1) symmetry

3 Weak interaction�
Combine with QED to form Electroweak Theory
Local symmetry based on SU (2)� U (1) symmetry

4 Gravity�Einstein�s General Relativity
Local symmetry�geneal coordinate transformtion

History

Non-Abelian Gauge Theory� Yang-Mills 1954

Spontaneous Symmetry Breaking (SSB)� Nambu, Goldstone, Salam, Weinberg, ~1960�s

SSB + Gauge theory� Higgs, Englert and Brout, Guralnik, Hagen, and Kibble, Anderson~1964

Renormalization of Yang-Mills theory� Fadeev and Popov, t�Hooft 1971

Standard Model�Electroweak Model� Weinberg, Salam, 1967
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Symmetries and Conservation Laws

Symmetry
Symmetries play important roles in high energy physics. Symmetry =) conservation law
Conservation Laws�all come from experiments directly or indirectly

1 Exact

1 Energy Conservation�time translation
2 Momentum Conservation�spatial translation
3 Electric Charge
4 Baryon Number

2 Approximate�Valid only in some approximations

1 Parity
2 Charge Conjugation
3 Lepton Number
4 Isospin
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Example 1: Energy Conservation
For simple case, Newton�s law gives
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Example 2 : rotational invariance
In Newton�s equation with potential

d
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p
dt

= �
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�!
x
�
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x
�
is rotational invariant, i.e. V
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This gives angular momentum conservation.
Example 3: Momentum conservation
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Consider 2 particles interact with each other through potential energy V
�!
x 1 �

!
x 2
�
so that the Lagrangian is

of the form,
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2
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This clearly invariant under the spatial translation,

!
x 1 !

!
x
0
1 =

!
x 1 +

!
a ,

!
x 2 !

!
x
0
2 =

!
x 2 +

!
a ,

The equations of motion are given by

d
!
p 1
dt

= �
!
r1V

�!
x 1 �

!
x 2
�

d
!
p 2
dt

= �
!
r2V

�!
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!
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�

Thus we have the momentum conservation,

d
dt

�!
p 1 +

!
p 2
�
= 0

Remark: In the Maxwell equations we have current conservation,

∂µ jµ =
∂ρ

∂t
+
!
r �

!
j = 0
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De�ne the total charge by

Q =
Z
V
d 3xρ

Then
dQ
dt

=
Z
V
d 3x

∂ρ

∂t
= �

Z
V
d 3x

!
r �

!
j = �

Z
d
!
S �

!
j = 0

where we have used Gauss theorem and assume
!
j = 0 on the surface.

Internal Symmetry-symmetry transformation in abstract space
Example: isospin symmetry
Motivation: nuclear force seems to be the same for neutron and proton
symmetry transfomation:

�
n (x )
p (x )

�
! U

�
n (x )
p (x )

�
, 2� 2 unitay matrix indep of x µ

Consequence: mp = mn degenerate states
Similarly,

�
π�,π0 ,π+

	
, I = 1 triplet,�

K 0 ,K+
	
, I = 1/2 doublet
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Eight-fold way : Gell-Mann, Neeman
Group togather mesons or baryons with same spin and parity,
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These are the same as irreducible representations of SU (3) group. The spectra of SU (3) symmetry is not as
good as isospin of SU (2). Nevertheless, it is still useful to classify hadrons in terms of SU (3) symmetry. This
is known as the eight-fold way.
Quark Model
One peculiar feature of eight fold way is that octet and decuplet are not the fundamental representation of
SU (3) group. In 1964, Gell-mann and Zweig independently proposed the quark model: all hadrons are built
out of spin 1

2 quarks which transform as the fundamental representation of SU (3),

qi =

0@ q1
q2
q3

1A =

0@ u
d
s

1A
with the quantum numbers

Q T T3 Y S B
u 2/3 1/2 +1/2 1/3 0 1/3
d �1/3 1/2 �1/2 1/3 0 1/3
s �1/3 0 0 �2/3 �1 1/3

In this scheme, mesons are qq̄ bound states. For examples,

π+ � d̄ u π0 � 1p
2
(ūu � d̄ d ). π� � ūd

K+ � s̄u K 0 � s̄d , K� � ūs . η0 � 1p
6
(ūu + d̄ d � 2s̄ s)
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and baryons are qqq bound states,

p � uud , n � ddu

Σ+ � suu , Σ0 � s
�
ud + dup

2

�
, Σ� � sdd

Ξ0 � ssu , Ξ� � ssd , Λ0 � s(ud � du)p
2

.

Quantum numbers of the hadrons are all carried by the quarks. But we do not know the dynamics which
bound the quarks into hadrons. Since quarks are the fundamental constituent of hadrons it is important to
�nd these particles. But over the years none have been found.
Paradoxes of simple quark model

1 Quarks have fractional charges while all observed particles have integer charges =) one of the quarks is
stable. None has been found.

2 Hadrons are exclusively made out qq̄, qqq bound states. In other word, qq, qqqq states are absent.

3 The quark content of the baryon N �++ is uuu. If the spin state is

���� 32 , 32
�

then all quarks are in spin-up

state~ α1α2α3 is totally symmetric. If we assume that the ground state has l = 0, then spatial wave
function is also symmetric. This will leads to violation of Pauli exclusion principle.
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Color degree of freedom
One way out of these problems, is to introduce color degrees of freedom for each quark and postulates that
only color singlets are physical observables. 3 colors are needed to get antisymmetric wave function for N �++

and remains a color singlet state.

uα = (u1 , u2 , u3) , dα = (d1 , d2 , d3) � � �

All hadrons form singlets under SU (3)color symmetry, e.g.

N �++ � uα(x1)αβ(x2)uγ(x3)εαβγ

Futhermore, color singlets can not be formed from the combination qq, qqqq and they are absent from the
observed specrum. Needless to say that a single quark is not observable.
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Baryon number
Why proton is stable? p ! e+ + γ does not violate any physical laws
Postulate Baryon number conservation: B (p) = 1, B (e+) = 0, B (γ) = 0,
In the universe at large, only baryons and no anti-baryons
At beginning, maybe B = 0 for the universe as whole, because

γ+ γ � p + p

To get B 6= 0 now, we need baryon number non-sonservation (Sakharov)
In Grand Uni�ed Theory, it is possible to have

p ! π0 + e+

Many experiments (IMB, Sudane, Kamiokonde...) search for this decay with null result,

τ
�
p ! π0 + e+

�
> 1031 years
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Symmetry and Noether�s Theorem
Particle mechanics
First illustrate Noether�s theorem in classical mechnics. The action is given by

S =
Z
L(qi , q̇i ) dt

Suppose S is invariant under some continuous symmetry transformation,

qi ! q 0i = fij (α)qj

where fij (α)0s are some functions of a parameter α,with fij (0) = δij . Consider in�nitesmal transformation,

α � 1

then,
qi ! q 0i ' qi + αf 0ij (0)qj = qi + δqi with δqi = αf 0ij (0)qj

The change of S is

δS =
Z
[

∂L
∂qi

δqi +
∂L
∂q̇i

δq̇i ] dt where δq̇i =
d
dt
(δqi )

Using the equation of motion,
∂L
∂qi

=
d
dt
(

∂L
∂q̇i
)

we can write δS as

δS =
Z
[
d
dt
(

∂L
∂q̇i
)δqi +

∂L
∂q̇i

d
dt
(δqi )] dt =

Z
[
d
dt
(

∂L
∂q̇i

δqi )] dt
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Thus δS = 0 will yield
d
dt
(

∂L
∂q̇i

δqi ) = 0 or
d
dt
(

∂L
∂q̇i

αf 0ij (0)qj ) = 0

This can be written as
dA
dt

= 0, with A =
∂L
∂q̇i

αf 0ij (0)qj

then A is the conserved quantity.
Example: Rotational symmetry in 3-dimension
Write the action as

S =
Z
L(
!
x , �̇!x ) dt =

Z
L(xi , ẋi ) dt

Suppose S is invariant under rotations in 3-dimension,

xi ! x 0i = Rij xj

where R is an orthogonal matrix, i.e.

RRT = RT R = 1 or RijRik = δjk

For in�nitesmal rotations, we write
Rij = δij + εij , jεij j � 1

Orthogonality requires,

(δij + εij )(δik + εik ) = δjk =) εjk + εkj = 0 i , e , εjk is antisymmetric
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We can compute the conserved quantities as

J =
∂L
∂ẋ

εij xj = εijpi xj

If we write εij = �εijk θk , then

J = �θk εijkpi xj = �θk Jk Jk = εijk xipj

Here Jk can be identi�ed with k-th component of the usual angular momentum.
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Field Theory
Start from the action,

S =
Z
L(φ, ∂µφ) d 4x

Consider the symmetry transformation,
φ(x )! φ0(x 0),

where we have included the transformations which involve change of coordinates,

x µ ! x 0µ

For in�nitesmal transformation, we write

δφ = φ0 (x 0)� φ (x ) , δx 0µ = x 0µ � x µ

For the transformation involving changes of coordinates, we need to include the change in the volume element

d 4x 0 = Jd 4x where J =

���� ∂(x 00 , x
0
1 , x

0
2 , x

0
3)

∂(x0 , x1 , x2 , x3)

����
is the Jacobian for the coordinate transformation. For in�nitesmal transformation we can write,

J = j ∂x
0µ

∂x ν
j � jg µ

ν +
∂(δx µ)

∂x ν
j � 1+ ∂µ(δx µ)

where we have used the relation

det(1+ ε) � 1+ Tr (ε) for jεj � 1
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Then
d 4x 0 = d 4x (1+ ∂µ(δx µ))

The change in the action is then

δS =
Z
[

∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ) + L∂µ(x µ)] dx 4

It is useful to de�ne the change of φ for �xed x µ,

δφ(x ) = φ0(x )� φ(x ) = φ0(x )� φ0(x 0) + φ0(x 0)� φ(x ) = φ0(x )� φ0 (x ) + (∂µφ0)δxµ + δφ

Note the operator δ commutes with the derivative operator ∂µ.

δφ = δφ+ (∂µφ)δx µ

Similarly,
δ(∂µφ) = δ(∂µφ) + ∂ν(∂µφ)δx ν

Then

δS =
Z
[

∂L
∂φ
(δφ+ (∂µφ)δx µ) +

∂L
∂(∂µφ)

(δ(∂µφ) + ∂ν(∂µφ)δx ν) + L∂µ(δx µ)] dx 4

Using Euler-Lagrange equation of motion
∂L
∂φ

= ∂µ(
∂L

∂(∂µφ)
)

we can write
∂L
∂φ

δφ+
∂L

∂(∂µφ)
)δ(∂µφ) = ∂µ(

∂L
∂(∂µφ)

δφ+
∂L

∂(∂µφ)
∂µ(δφ) = ∂µ [

∂L
∂(∂µφ)

δφ]
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where we have used
∂µ(δφ) = δ(∂µφ)

We can also combine other terms as

[
∂L
∂φ
(∂νφ) +

∂L
∂(∂µφ)

∂ν(∂µφ)]δx ν + L∂ν(δx ν) = (∂νL)δx ν + L∂ν(δx ν) = ∂ν(Lδx ν)

Then we get

δS =
Z
dx 4∂µ [

∂L
∂(∂µφ)

δφ+ Lδx µ ]

and if δS=0 under the symmetry ransformation of �elds, then

∂µJµ = ∂µ [
∂L

∂(∂µφ)
δφ+ Lδx µ ] = 0 current conservation
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Example: space-time translation
Here the coordinate transformation is,

x µ ! x 0µ = x µ + aµ =) φ0(x + a) = φ(x )

then
δφ = φ0µ∂µφ

and the conservation laws take the form

∂µ [
∂L

∂(∂µφ)
(�aν∂νφ) + Laµ ] = �∂µ(Tµνaν) = 0

where

Tµν =
∂L

∂(∂µφ)
∂νφ� gµνL

is the energy momentum tensor. In particular,

T0i =
∂L

∂(∂0φ)
∂iφ

and
Pi =

Z
dx 3T0i

is the total momentum of the �elds. Also

T00 =
∂L

∂(∂0φ)
∂0φ� L

is the Hamiltonian density and

E =
Z
dx 3T00

is the total energy.
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