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Group Theory
The most useful tool for studying symmetry is the group theory. We will give a simple discussion of the parts
of the group theory which are commonly used in high energy physics.
Elements of group theory
A group G is a collection of elements (a, b, c� � � ) with a multiplication laws having the following properties;

1 Closure. If a, b 2 G , c = ab 2 G
2 Associative a(bc ) = (ab)c
3 Identity 9e 2 G 3 a = ea = ae 8a 2 G
4 Inverse For every a 2 G , 9a�1 3 aa�1 = e = a�1a

Examples of groups frequently used in physics are :

1 Abelian group � � group multiplication commutes, i.e. ab = ba 8a, b 2 G
e.g. cyclic group of order n, Zn , consists of a, a2 , a3 , � � � , an = E

2 Orthogonal group � � n � n orthogonal matrices, RRT = RT R = 1, R : n � n matrix
e. g. the matrices representing rotations in 2-dimesions,

R (θ) =
�
cos θ � sin θ
sin θ cos θ

�
3 Unitary group � � � � n � n unitary matrices,

We can built larger groups from smaller ones by direct product:
Direct product group � �Given any two groups , G = fg1 , g2 � � � g, H = fh1 , h2 � � � g and if g 0s commute
with h0s we can de�ne a direct product group by G �H = fgihj g with multiplication law

(gihj )(gmhn) = (gi gm )(hjhn)
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Theory of Representation
Consider a group G = fg1 � � � gn � � � g. If for each group element gi ,there is an n � n matrix D (gi ) such that it
preserves the group multiplication, i.e.

D (g1)D (g2) = D (g1g2) 8 g1 , g2 2 G

then D 0s forms a representation of the group G (n-dimensional representation). In other words, gi �! D (gi )
is a homomorphism. If there exists a non-singular matric M such that all matrices in the representation can be
transformed into block diagonal form,

MD (a)M�1 =

0BB@
D1(a) 0 0
0 D2(a) 0

0 0
. . .

1CCA for all a 2 G .

D (a) is called reducible representation. If representation is not reducible, then it is irreducible representation
(irrep)
Continuous group: groups parametrized by set of continuous parameters
Example: Rotations in 2-dimensions can be parametrized by 0 � θ < 2π
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SU(2) group
Set of 2� 2 unitary matrices with determinant 1 is called SU (2) group.
In general, n � n unitary matrix U can be written as

U = e iH H : n � n hermitian matrix

From
detU = e iTrH

we get
TrH = 0 if detU = 1

Thus n � n unitary matrices U can be written in terms of n � n traceless Hermitian matrices.

Note that Pauli matrices:

σ1 =

�
0 1
1 0

�
, σ2 =

�
0 �i
i 0

�
, σ3 =

�
1 0
0 �1

�

is a complete set of 2� 2 hermitian traceless matrices. We can use them to describe SU (2) matrices.
De�ne Ji =

σi
2 . We can compute the commutators

[J1 , J2 ] = iJ3 , [J2 , J3 ] = iJ1 , [J3 , J1 ] = iJ2

This is the Lie algebra of SU (2) symmetry. This is exactly the same as the commutation relation of angular
momentum.
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Irrep of SU (2) algebra
De�ne

J 2 = J 21 + J
2
2 + J

3
2 , with property [J 2 , Ji ] = 0 , i = 1, 2, 3

Also de�ne

J� � J1 � iJ2 then J 2 =
1
2
(J+J� + J�J+) + J 23 and [J+, J� ] = 2J3

For convenience, choose simultaneous eigenstates of J 2 , J3 ,

J 2 jλ,mi = λjλ,mi , λ3 jλ,mi = mjλ,mi

From
[J+, J3 ] = �J+

we get
(J+J3 � J3J+)jλ,mi = �J+ jλ,mi

Or
J3(J+ jλ,mi) = (m + 1)(J+ jλ,mi)

Thus J+ raises the eigenvalue from m to m + 1 and is called raising operator . Similarly, J� lowers m to m � 1,

J3(J� jλ,mi) = (m � 1)(J� jλ,mi)

Since
J 2 � J 23 , λ�m2 � 0

we see that m is bounded above and below. Let j be the largest value of m, then

J+ jλ, ji = 0
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Then
0 = J�J+ jλ, ji = (J 23 � J 23 � J3)jλ, ji = (λ� j 2 � j)jλ, ji

and
λ = j(j + 1)

Similarly, let j 0 be the smallest value of m, then

J� jλ, j 0i = 0 λ = j 0(j 0 � 1)

Combining these 2 relations, we get

j(j + 1) = j 0(j 0 � 1) ) j 0 = �j and j � j 0 = 2j = integer

We will use j ,m to label the states. Assume the states are normalized,

hjmjjm 0i = δmm0

Write
J� jjmi = C�(jm)jj ,m � 1i

then
hjmjJ�J+ jjmi = jC+(j ,m)j2

LHS = hj ,mj(J 2 � J 23 � J3)jjmi = j(j + 1)�m2 �m

This gives

C+(j ,m) =
q
(j �m)(j +m + 1)
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Similarly

C�(j ,m) =
q
(j +m)(j �m + 1)

Summary: eigenstates jjmi have the properties

J3 jj ,mi = mjj ,mi J� jj ,mi =
q
(j �m)(j �m + 1)jjm � 1i , J 2 jj ,mi = j(j + 1)jmi

J jj ,mi , m = �j ,�j + 1, � � � , j are the basis for irreducible representation of SU(2) group. From these
relations we can construct the representation matrices. We will illustrate these by following examples.
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Example: j = 1
2 , m = � 1

2

J3 = j
1
2
,� 1
2
h= � 1

2
j 1
2
,� 1
2
i

J+ j
1
2
,
1
2
i = 0 , J+ j

1
2
,� 1
2
= j 1

2
,
1
2
i , J� j

1
2
,
1
2
= j 1

2
,� 1
2
i , J� j

1
2
,� 1
2
i = 0

If we write

j 1
2
,
1
2
i = α =

�
1
0

�
j 1
2
,� 1
2
i = β =

�
0
1

�
Then we can represent J 0s by matrices,

J3 =
1
2

�
1 0
0 �1

�
J+ =

�
0 1
0 0

�
J� =

�
0 0
1 0

�

J1 =
1
2
(J+ + J�) =

1
2

�
0 1
1 0

�
J2 =

1
2i
(J+ � J�) =

1
2

�
0 �i
i 0

�
Within a factor of 12 , these are just Pauli matrices
Summary:

1 Among the generator only J3 is diagonal, � SU(2) is a rank-1 group

2 Irreducible representation is labeled by j and the dimension is 2j + 1

3 Basis states jj ,mi m = j , j � 1 � � � (�j) representation matrices can be obtained from

J3 jj ,mi = mjj ,mi J� jj ,mi =
q
(j �m)(j �m + 1)jj ,m � 1i
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SU(2) and rotation group
The generators of SU (2) group are Pauli matrices

σ1 =

�
0 1
1 0

�
, σ2 =

�
0 �i
i 0

�
, σ3 =

�
1 0
0 �1

�
Let

!
r = (x , y , z ) be arbitrary vector in R3 (3 dimensional coordinate space). De�ne a 2� 2 matrix h by

h = ~σ �!r =
�

z x � iy
x + iy �z

�
h has the following properties

1 h+ = h
2 Trh = 0
3 det h = �(x 2 + y 2 + z 2)

Let U be a 2� 2 unitary matrix with detU = 1. Consider the transformation

h ! h0 = UhU †

Then we have
1 h0+ = h0

2 Trh0 = 0
3 det h0 = det h

Properties (1)&(2) imply that h�can also be expanded in terms of Pauli matrices

h0 =~r 0 �~σ !
r = (x 0, y 0, z 0)

det h0 = det h ) x 02 + y 02 + z 02 = x 2 + y 2 + z 2

Thus relation between
!
r and

!
r
0
is a rotation. This means that an arbitrary 2� 2 unitary matrix U induces a

rotation in R3 . This provides a connection between SU (2) and O (3) groups.
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Rotation group & QM
Rotation in R3 can be represented as linear transformations on

!
r = (x , y , z ) = (r1 , r2 , r3) , ri ! r 0i = RijXj RRT = 1 = RT R

Consider an arbitary function of coordinates, f (
!
r ) = f (x , y , z ). Under the rotation, the change in f

f (ri )! f (Rij rj ) = f 0(ri )

If f = f 0 we say f is invariant under rotation, eg f (ri ) = f (r ), r =
p
x 2 + y 2 + z 2

In QM, we implement the rotation by

jψi ! jψ0i = U jψi, O ! O 0 = UOU †

so that
) hψ0 jO 0 jψ0i = hψjO jψi

If O 0 = O , we say O is invariant under rotation

! UO = OU [O ,U ] = 0

In terms of in�nitesimal generators, we have
U = e�iθ~n�~J

This implies
[Ji ,O ] = 0, i = 1, 2, 3

For the case where O is the Hamiltonian H , this gives [Ji ,H ] = 0. Let jψi be an eigenstate of H with
eigenvaule E ,

H jψi = E jψi
then

(JiH �HJi )jψi = 0 ) H (Ji jψi) = E (Ji jψi)
i .e jψi & Ji jψi are degenerate. For example, let jψi = jj ,mi the eigenstates of angular momentum, then
J� jj .mi are also eigenstates if jψi is eigenstate of H. This means for a given j , the degeneracy is (2j + 1).
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Global symmetry in Field Theory
Example 1: Self interacting scalar �elds
Consider Lagrangian,

L = 1
2

h�
∂µφ1

�2
+
�
∂µφ2

�2i� µ2

2

�
φ21 + φ22

�
� λ

4

�
φ21 + φ22

�2
this is invariant under rotation in (φ1 , φ2) plane, O (2) symmetry,�

φ1
φ2

�
�!

�
φ01
φ02

�
=

�
cos θ � sin θ
sin θ cos θ

��
φ1
φ2

�
θ is independent of x µ and is called global transformation.
Physical consequences:

1 Mass degenercy

2 Relation between coupling constants

� � � � � � � � � � � � � � � � � �
Noether�s currrent: for θ � 1,

δφ1 = �θφ2 , δφ2 = θφ1

and

Jµ �
∂L
∂φi

δφi = �
��

∂µφ1
�

φ2 �
�
∂µφ2

�
φ1
�

This current is conserved,
∂µJµ = 0
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and conserved charge is

Q =
Z
d 3xJ 0 ,

and
dQ
dt

=
Z
d 3x

∂J 0

∂t
= �

Z
d 3x

!
r �

!
J = �

Z
d
!
S �

!
J = 0

Another way is to write

φ =
1p
2
(φ1 + iφ2)

and
L = ∂µφ†∂µφ� µ2φ†φ� λ

�
φ†φ

�2
This is a phase transformation,

φ �! φ0 = e�iθ φ

This is called the U (1) symmetry. Charge conservation. is one such example. Approximate symmetries, e.g.
lepton number, isospin, Baryon number,� � � are probably realized in the form of global symmtries.
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Example 2 : Yukawa interaction�Scalar �eld interacting with fermion �eld
Lagrangian is of the form

L =
_
ψ(iγµ∂µ �m)ψ+

1
2

�
∂µφ

�2 � µ2

2
φ2 � λ

4
φ4 + g

_
ψγ5ψφ

This Lagrangian is invariant under the U (1) transformation,

ψ ! ψ0 = e iαψ, φ ! φ0 = φ

Here the fermion number is conserved. Note that if there are two such fermions, ψ1 ,ψ2 with same
transformation, then the Yukawa interaction will be

LY = g1
_
ψ1γ5ψ1φ+ g2

_
ψ2γ5ψ2φ

Thus we have two independent couplings g1 , g2 , one for each fermion.
Example 3 : Global non-abelian symmetry
Consider the case where ψ is a doublet and φ a singlet under SU (2) ,

ψ =

�
ψ1
ψ2

�

and under SU (2)

ψ ! ψ0 = exp i

 !
τ �!α
2

!
ψ, φ ! φ0 = φ
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!
α = (α1 , α2 , α3) are real parameters. The Lagrangian

L =
_
ψ(iγµ∂µ �m)ψ+

1
2

�
∂µφ

�2 � µ2

2
φ2 � λ

4
φ4 + g

_
ψψφ

is SU (2) invariant.
The Noether�s currents are of the form,

!
J =

_
ψ(γµ

!
τ

2
)ψ

and conserved charges are

Q i =
Z

ψ†(
τi
2
)ψ

One can verify that �
Q i ,Q j � = i εijkQ k

which is the SU (2) algebra.
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Local Symmetry
Local symmetry: transformation parameters, e.g. angle θ, depend on x µ. This originates from electromagnetic
theory.
Maxwell Equations:

!
r �

!
E =

ρ

ε0
,

!
r �

!
B = 0

!
r�

!
E +

∂
!
B

∂t
= 0,

1
µ0

!
r�

!
B = ε0

∂
!
E

∂t
+
!
J

Introduce φ,
!
A to solve those equations without source,

!
B =

!
r�

!
A,

!
E = �

!
rφ� ∂

!
A

∂t

These are not unique because of gauge tranformation

φ �! φ� ∂α

∂t
,

!
A �!

!
A +

!
rα

or
Aµ �! Aµ � ∂µα

will give the same electromagnetic �elds
In quantum mechanics, Schrodinger equation for charged particle,"

1
2m

�
�h
i

!
r� e

!
A
�2
� eφ

#
ψ = i�h

∂ψ

∂t
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This requires transformation of wave function,

ψ �! exp
�
i
e
�h

α (x )
�

ψ

to get same physics.
Thus gauge transformation is connected to symmetry (local) transformation.
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In �eld theory, gauge �elds are needed to contruct covariant derivatives.
1) Abelian symmetry
Consider Lagrangian with global U (1) symmetry,

L =
�
∂µφ

�†
(∂µφ) + µ2φ†φ� λ

�
φ†φ

�2
Suppose phase transformation depends on x µ,

φ ! φ0 = e igα(x )φ

The derivative transforms as
∂µφ ! ∂µφ

0
= e iα(x ) [∂µφ+ ig (∂µα) φ] ,

not a phase transformation.
Introduce gauge �eld Aµ, with transformation

Aµ ! A0µ = Aµ � ∂µα

The combination
D µφ � (∂µ � igAµ) φ, covariant derivative

will be transformed by a phase,
D µφ0 = e igα(x ) (D µφ)

and the combination
Dµφ†D µφ

is invarianat under local phase transformation.
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De�ne anti-symmetric tensor for the gauge �eld

�
DµDν �DνDµ

�
φ = gFµνφ, with Fµν = ∂µAν � ∂νAµ

We can use the property of the covariant derivative to show that

F 0µν = Fµν

Complete Lagragian is

L=Dµφ†D µφ� 1
4
FµνF µν � V (φ)

where V (φ) does not depend on derivative of φ.

mass term AµAµ is not gauge invariant ) massless particle)long range force
coupling of gauge �eld to other �eld is universal
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2) Non-Abelian symmetry-Yang Mills �elds
1954: Yang-Mills generalized U(1) local symmetry to SU(2) local symmetry.

Consider an isospin doublet ψ =

�
ψ1
ψ2

�
Under SU(2) transformation

ψ(x )! ψ0(x ) = expf� i~τ �
~θ

2
gψ(x )

where ~τ = (τ1 , τ2 , τ3) are Pauli matrices,

σ1 =

�
0 1
1 0

�
, σ2 =

�
0 �i
i 0

�
, σ3 =

�
1 0
0 �1

�
with

[
τi
2
,

τj
2
] = iεijk (

τk
2
)

Start from free Lagrangian
L0 = ψ̄(x )(iγµ∂µ �m)ψ

which is invariant under global SU (2) transformation where ~θ = (θ1 , θ2 , θ3) are indep of xµ.
For local symmetry transformation, write

ψ(x )! ψ0(x ) = U (θ)ψ(x ) U (θ) = expf� i~τ �
~θ(x )
2

g

Derivative term
∂µψ(x )! ∂µψ0(x ) = U∂µψ+ (∂µU )ψ
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is not invariant. Introduce gauge �elds ~Aµ to form the covariant derivative,

Dµψ(x ) � (∂µ � ig
~τ � ~Aµ

2
)ψ

Require that
[Dµψ]0 = U [Dµψ]

Or

(∂µ � ig
~τ � ~Aµ

0

2
)(Uψ) = U (∂µ � ig

~τ � ~Aµ

2
)ψ

This gives the transformation of gauge �eld,

~τ � ~Aµ
0

2
= U (

~τ � ~Aµ

2
)U�1 � i

g
(∂µU )U�1

We use covariant derivatives to construct �eld tensor

DµDνψ = (∂µ � ig
~τ � ~Aµ

2
)(∂ν � ig

~τ � ~Aν

2
)ψ = ∂µ∂νψ� ig (

~τ � ~Aµ

2
∂νψ+

~τ � ~Aν

2
∂µψ)

�ig ∂µ(
~τ � ~Aν

2
)ψ+ (�ig )2(

~τ � ~Aµ

2
)(
~τ � ~Aν

2
)ψ

Antisymmetrize this to get the �eld tensor,

(DµDν �DνDµ)ψ � ig (
~τ � ~Fµν

2
)ψ
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then
~τ � ~Fµν

2
=
~τ

2
� (∂µ

~Aν � ∂ν
~Aµ)� ig [

~τ � ~Aµ

2
,
~τ � ~Aν

2
]

Or in terms of components,
F iµν = ∂µAiν � ∂νAiµ + g εijkAiµA

k
ν

The the term quadratic in A is new in Non-Abelian symmetry. Under the gauge transformation we have

~τ � ~Fµν
0
= U (~τ � ~Fµν)U�1
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In�nitesmal transformation θ(x )� 1

Ai/µ = Aµ + εijk θjAkµ �
1
g

∂µθi

F /i
µν = F

i
µν + εijk θjF kµν

Remarks

1 Again AaµA
aµ is not gauge invariant)gauge boson massless)long range force

2 Aaµ carries the symmetry charge (e.g. color � )

3 The quadratic term in F aµν � ∂A � ∂A + gAA is for asymptotic freedom.

Recipe for the construction of theory with local symmetry

1 Write down a Lagrangian with local symmetry

2 Replace the usual derivative ∂µφ by the covariant derivative Dµφ �
�

∂µ � igAaµta
�

φ where guage �elds

Aaµ have been introduced.

3 Use the antisymmetric combination
�
DµDν �DνDµ

�
φ � F aµνφ to construct the �eld tensor F aµν and add

� 1
4
F aµνF

aµν to the Lagrangian density
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