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Group Theory

The most useful tool for studying symmetry is the group theory. We will give a simple discussion of the parts
of the group theory which are commonly used in high energy physics.
Elements of group theory

A group G is a collection of elements (a, b, c---) with a multiplication laws having the following properties;
@ Closure. IfabeG,c=abeG
@ Associative a(bc) = (ab)c
Q@ Identity JeeG > a=ea=ae VYaeG
© Inverse Foreveryac G,3a! 3> aal=e=ala

Examples of groups frequently used in physics are :

@ Abelian group —- group multiplication commutes, i.e. ab=ba Va, b€ G
e.g. cyclic group of order n, Z,, consists of a,a%,a%,---,a" = E

@ Orthogonal group —— n x n  orthogonal matrices, RRT = RTR =1, R: nx n matrix
e. g. the matrices representing rotations in 2-dimesions,

cosf —sinf
R(9>:( sin 0 cosf )

© Unitary group ———- n x n unitary matrices,
We can built larger groups from smaller ones by direct product:
Direct product group —— Given any two groups , G = {g1,8 -}, H={hy,ho---} and if g’s commute
with h's we can define a direct product group by G x H = {g;h;} with multiplication law
(gfhj)(gmhn) = <g/'gm)(hjhn)
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Theory of Representation

Consider a group G = {g1 -+~ g, }. If for each group element gj,there is an n x n matrix D (g;) such that it
preserves the group multiplication, i.e.

D(g1)D(g2) = D(g1&2) V g8 €6

then D’s forms a representation of the group G (n-dimensional representation). In other words, gi — D (g;)
is a homomorphism. If there exists a non-singular matric M such that all matrices in the representation can be
transformed into block diagonal form,

MD(a)M~! = for all a € G.

D (a) is called reducible representation. If representation is not reducible, then it is irreducible representation
(irrep)

Continuous group: groups parametrized by set of continuous parameters

Example: Rotations in 2-dimensions can be parametrized by 0 < 6 < 27
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SU(2) group
Set of 2 X 2 unitary matrices with determinant 1 is called SU (2) group.
In general, n X n unitary matrix U can be written as

U=e" H:nxn hermitian matrix

From )
detU =™

we get
TrH =0 if detU =1

Thus n x n unitary matrices U can be written in terms of n X n traceless Hermitian matrices.
Note that Pauli matrices:

01 0 i 1 0
as(Vo) e (V) (e )

is a complete set of 2 x 2 hermitian traceless matrices. We can use them to describe SU (2) matrices.
Define J; = %’ . We can compute the commutators

i, Ll =ils , [h, k=i, [ 4] =ik
This is the Lie algebra of SU (2) symmetry. This is exactly the same as the commutation relation of angular

momentum.
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Irrep of SU (2) algebra
Define
S =2+ 2+, with property [J2,4]=0, i=1,2,3
Also define 1
Je=Ji+ik then J2= §(J+J, +J_Ji)+ 3 and (U, J ] =24

For convenience, choose simultaneous eigenstates of J?, J3,

A, m)y =AAm) , As|A,m) = m|A, m)

From
Uy, S5 = —Js
we get
(J+d3 = J3J4)[A, m) = —J[A, m)
Or

J3(Je A m)) = (m+1)(Je A m))

Thus J; raises the eigenvalue from m to m + 1 and is called raising operator. Similarly, J_ lowers m to m — 1,
J3(J-[A, m)) = (m —=1)(J-|A, m))

Since
P>, A=-m?>0

we see that m is bounded above and below. Let j be the largest value of m, then
Jy|A )y =0
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Then
0=J-Jeldj) = (5 -5 - %)

Ady = (A== )IAD)
and
A=jG+1)
Similarly, let j/ be the smallest value of m, then
JAJy =0 A=j("-1)
Combining these 2 relations, we get
JG+1) =70 =1) = J'=—j and j—j =2j= integer

We will use j, m to label the states. Assume the states are normalized,

(Gmljm"y = &

Write
Ji|jm) = C+(jm)|j, m£1)
then
(im|J=ds|jm) = |C+(j, m)[?
LHS = (j, m|(J* = 5 = J5)|jm) = j(j +1) = m* —m
This gives

CelGom) = /(G —m)(+m+1)
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Similarly
ClUm)=y/G+mi-m+1)

Summary: eigenstates |jm) have the properties

Bliym)y=mlj,m) Jelj,m)=/GFmM(GEm+1)|jmE£1) , Slj,m)=j(+1)jm)
Jlj,my, m=—j,—j+1,---,j are the basis for irreducible representation of SU(2) group. From these
relations we can construct the representation matrices. We will illustrate these by following examples.
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Example: j=1 , m=+
1 1 1 1
J3—\§:i§<—i§\*’i§>
11 1 11 11 1 1 1
J+|§.§>70 ' J+‘§, 27‘5;5) ' J7‘§’§7‘5’75> , J,I*,**)—O
If we write
11 1 1 1 0
pr==(s) 1z-p=s=(1)

1 1 0 1 1 1 0 —i
J175(J++J—)7§<1 0) szE(h*J—)*E(,- 0 )

Within a factor of % these are just Pauli matrices
Summary:
@ Among the generator only J; is diagonal, — SU(2) is a rank-1 group

@ Irreducible representation is labeled by j and the dimension is 2j + 1
j,m) m=j,j—1---(—j) representation matrices can be obtained from

© Basis states

Jliym)y =mljiim)  Jeljiim) =/(GFm)(£m+1)j,mE1)
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SU(2) and rotation group
The generators of SU(2) group are Pauli matrices

0 1 0 i 1 0
=0 ) 2700 0 )T 0 1

Let ¥ = (x,y,z) be arbitrary vector in R3 (3 dimensional coordinate space). Define a 2 X 2 matrix h by

o z X — iy
hfvri(eriy -z )

h has the following properties
Q ht=n
Q@ 7h=0
e det h = 7(x2 +y? +22)

Let U be a 2 x 2 unitary matrix with detU = 1. Consider the transformation

h— k' = UnU*
Then we have

o Wt =n

Q@ T =0

@ deth’ =deth

Properties (1)&(2) imply that h' can also be expanded in terms of Pauli matrices

[
hW=r-¢r=

(Xl,y/, z/)
deth =deth = x?+y?+2°=x>+y>+2°
— —!
Thus relation between r and r is a rotation. This means that an arbitrary 2 X 2 unitary matrix U induces a
rotation in R3. This provides a connection between SU(2) and O(3) groups.
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Rotation group & QM
Rotation in R3 can be represented as linear transformations on

T =(xy,2)=(n.rn) , n—r=R;X; RRT=1=RTR

-
r

Consider an arbitary function of coordinates, f(r) = f(x,y,z). Under the rotation, the change in f

f(ri)— f(Ryr;) =f'(r;)
If f = f’ we say fis invariant under rotation, eg f(r;) = f(r),r =v/x2+y2 + 22
In QM, we implement the rotation by

¥) = 1¢) = Uly), 0 — 0" =vou'

so that

= (¢'|0'ly") = (y[Oly)
If O' = O, we say O is invariant under rotation

— UO=0U [0,U]=0
In terms of infinitesimal generators, we have
U = e i6id

This implies
[J,0]=0,i=1,2,3

For the case where O is the Hamiltonian H, this gives [J;, H] = 0. Let |¢) be an eigenstate of H with

eigenvaule E,
Hlp) = Ely)
then
(JiH=HI)p) =0 = H(Jlyp)) = E(Jilp))
i.e |¢p) & Ji|p) are degenerate. For example, let |¢) = |j, m) the eigenstates of angular momentum, then
Ji|j.m) are also eigenstates if |ip) is eigenstate of H. This means for a given j , the degeneracy-is (2j +1).
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Global symmetry in Field Theory
Example 1: Self interacting scalar fields
Consider Lagrangian,

1 2 A
£=5 [0upr) + (0uo)?] = 5= (93 +93) = 5 (93 +93)°

this is invariant under rotation in (¢, ¢,) plane, O(2) symmetry,

¢ ¢y \ _ [ cos@ —sinf ¢,
< ¢, - ¢, )~ \ sinb cosf ¢,
0 is independent of x" and is called global transformation.

Physical consequences:

@ Mass degenercy

@ Relation between coupling constants

Noether's currrent: for 6 < 1,
o, = —0¢,, O, = 69,
and

o

a9 20 =~ [0n01) 92 = (0u92) 1]

This current is conserved,
9, J' =0
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and conserved charge is

and

. 0 g e P =
aQ _ d3xai:7/d3xV-J:f/d5-J:0
dt Jat

Another way is to write

= 9+ i)
¢—\/§¢1 i,

and ,
L =0,4"0.0 —12¢"¢p— A (9'9)

This is a phase transformation,

p—¢' =
This is called the U (1) symmetry. Charge conservation. is one such example. Approximate symmetries, e.g.
lepton number, isospin, Baryon number,- - - are probably realized in the form of global symmtries.
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Example 2 : Yukawa interaction—Scalar field interacting with fermion field
Lagrangian is of the form

_ . 1 2 A _
£=(ir" 3, —m)p+ 5 049)° = E-97 = 20* + gprsvg

This Lagrangian is invariant under the U (1) transformation,

oy =€y, p—9 =¢

Here the fermion number is conserved. Note that if there are two such fermions, ¢, ¢, with same
transformation, then the Yukawa interaction will be

Ly =g11759:19 + &9, Vs ¢

Thus we have two independent couplings g1, g2, one for each fermion.
Example 3 : Global non-abelian symmetry
Consider the case where ¢ is a doublet and ¢ a singlet under SU (2),

and under SU (2)

¢—>¢/=expi< 5 )w, g9 =9
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« = (a1, @, a3) are real parameters. The Lagrangian
= 1 2 p? A -
£ =iy~ my+ 5 0u9)” = 502 = S0* + glye

is SU (2) invariant.
The Noether's currents are of the form,

- T
J=$(" 209
and conserved charges are
T,
o= [y

One can verify that
[Q, Q'] = ie Q"

which is the SU (2) algebra.
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Local Symmetry
Local symmetry: transformation parameters, e.g. angle 0, depend on x*. This originates from electromagnetic

theory.
Maxwell Equations:

v.E=F, V.-B=0
<0}
LB I
VXE+ — =0, VxB=¢g—+J
ot Ho
Introduce ¢, A to solve those equations without source,
L oo 4 o -
B = A E=-V¢— —
V x A, V¢ 3
These are not unique because of gauge tranformation
¢ — ¢— g—i, Z — Z + 60(

or
Ay — Ay — 0

will give the same electromagnetic fields
In quantum mechanics, Schrodinger equation for charged particle,

L N2
{1 (E.erA) 7e¢}zp:i‘h:—lf

2m \ i
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This requires transformation of wave function,
e
p—exp (iza(x)p

to get same physics.
Thus gauge transformation is connected to symmetry (local) transformation.
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In field theory, gauge fields are needed to contruct covariant derivatives.
1) Abelian symmetry
Consider Lagrangian with global U (1) symmetry,
+ 2
L= (0:9) (0"9)+ 1’9" - A (¢"9)

Suppose phase transformation depends on x*,

‘P _ ¢/ _ eign(x)q)

The derivative transforms as , )
dp—arg = e [arg +ig (9'a) ¢],

not a phase transformation.
Introduce gauge field A¥, with transformation

Al — AT = Al — 9t

The combination
D¢ = (9" — igAt) ¢, covariant derivative

will be transformed by a phase,
D"(p/ — e/’gzx(x) (D"(p)

and the combination
Dugp'DM¢

is invarianat under local phase transformation.
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Define anti-symmetric tensor for the gauge field
(DD, —D,D,) ¢ = gFuup,  with  Fy = 3,A, — A,
We can use the property of the covariant derivative to show that
Fly = Fu
Complete Lagragian is
LD, D"~ FuF™ ~V (9)
where V (¢) does not depend on derivative of ¢.

@ mass term A'A, is not gauge invariant = massless particle=>long range force

@ coupling of gauge field to other field is universal
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2) Non-Abelian symmetry-Yang Mills fields
1954: Yang-Mills generalized U(1) local symmetry to SU(2) local symmetry.

Consider an isospin doublet ¢ = il
2
Under SU(2) transformation
it 8
P(x) = ¢'(x) = exp{=——}p(x)

where T = (71, T2, T3) are Pauli matrices,

0 1 0 —i 10
a=(16) e (D7) me(o 5)

L)
2'2

with .

. k
= ’eijk(7)
Start from free Lagrangian

Lo = P(x)(iv"9, — m)y

which is invariant under global SU (2) transformation where 8 = (61, 62,63) are indep of Xy
For local symmetry transformation, write

P00 = () = UEPG)  U(E) = exp{~ 203

Derivative term

Ap(x) = 9y’ (x) = Udyyp + (9, U)y
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is not invariant. Introduce gauge fields Aﬁp to form the covariant derivative,

7 A,

Dyp(x) = (3~ ig 1)y

Require that
[Duyp]" = U[Dyy]

Or
I

CT-A T-A
(a,,—lg £ 2

J(Uy) = U3, —ig

This gives the transformation of gauge field,

o
T-A

"o

2 U(

We use covariant derivatives to construct field tensor

CTA T-A,
)= 0,09 — ig(— LA+ D)

A %A, 7
DyDlﬂp:(ay*/g 2 y)(av*’g !

gy (T (T g

Antisymmetrize this to get the field tensor,
T Fu
(DyDv - Dva)‘P = ’g(T}“)lP
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then

o T A, T

(A, — 0A,) — ig| > 2”]

N
N[ AL

Or in terms of components,
i

Fhv = a},A{, - avA;l + geijkA;‘Af;

The the term quadratic in A is new in Non-Abelian symmetry. Under the gauge transformation we have

7 Fv = U(Z- Fv)U™!
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Infinitesmal transformation 6(x) < 1

ATE = A 4 TR AK — la,ﬂ’
g

Fli=Fl, +e*o/Fk,
Remarks
Q Again AjA® is not gauge invariant=>gauge boson massless=-long range force
Q Aj, carries the symmetry charge (e.g. color —)
© The quadratic term in F2 ~ 9A — dA + gAA is for asymptotic freedom.

Recipe for the construction of theory with local symmetry

@ Write down a Lagrangian with local symmetry

@ Replace the usual derivative 9, ¢ by the covariant derivative Dy ¢ ~ (8,4 - igAf,t") ¢ where guage fields
A; have been introduced.

e Use the antisymmetric combination (DVDV — DL,DM) ¢~ F}‘qu) to construct the field tensor F? and add

2%

1
—ZF;VF"’W to the Lagrangian density
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