Global and Local symmetries

Ling-Fong Li

3

イロト イヨト イヨト イヨト

Group Theory

The most useful tool for studying symmetry is the group theory. We will give a simple discussion of the parts of the group theory which are commonly used in high energy physics.

Elements of group theory

 \overline{A} group G is a collection of elements (a, b, c...) with a multiplication laws having the following properties;

1	Closure.	If a, $b\in G$, $c=ab\in G$
2	Associative	a(bc) = (ab)c
3	Identity	$\exists e \in G \ i = a = ae \forall a \in G$
4	Inverse For e	every $a\in G$, $\exists a^{-1}$ \ni $aa^{-1}=e=a^{-1}a$

Examples of groups frequently used in physics are :

- Abelian group —- group multiplication commutes, i.e. ab = ba ∀a, b ∈ G e.g. cyclic group of order n, Z_n, consists of a, a², a³, ..., aⁿ = E
- **2** Orthogonal group $n \times n$ orthogonal matrices, $RR^T = R^T R = 1$, $R : n \times n$ matrix e. g. the matrices representing rotations in 2-dimesions,

$$R\left(\theta\right) = \left(\begin{array}{cc} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{array}\right)$$

O Unitary group — $n \times n$ unitary matrices,

We can built larger groups from smaller ones by direct product: **Direct product group** — Given any two groups, $G = \{g_1, g_2 \cdots\}$, $H = \{h_1, h_2 \cdots\}$ and if g's commute with h's we can define a direct product group by $G \times H = \{g_i h_i\}$ with multiplication law

$$(g_i h_j)(g_m h_n) = (g_i g_m)(h_j h_n)$$

・ロト ・個ト ・ヨト ・ヨト

Theory of Representation

Consider a group $G = \{g_1 \cdots g_n \cdots\}$. If for each group element g_i , there is an $n \times n$ matrix $D(g_i)$ such that it preserves the group multiplication, i.e.

$$D(g_1)D(g_2) = D(g_1g_2) \quad \forall g_1, g_2 \in G$$

then D's forms a representation of the group G (n-dimensional representation). In other words, $g_i \longrightarrow D(g_i)$ is a homomorphism. If there exists a non-singular matric M such that all matrices in the representation can be transformed into block diagonal form,

$$MD(a)M^{-1} = \begin{pmatrix} D_1(a) & 0 & 0 \\ 0 & D_2(a) & 0 \\ 0 & 0 & \ddots \\ 0 & 0 & \ddots \end{pmatrix} \quad \text{for all } a \in G.$$

D(a) is called reducible representation. If representation is not reducible, then it is irreducible representation (irrep)

Continuous group: groups parametrized by set of continuous parameters Example: Rotations in 2-dimensions can be parametrized by $0 \le \theta < 2\pi$

イロン イ団 とくほと くほとう

SU(2) group

Set of 2×2 unitary matrices with determinant 1 is called *SU*(2) group. In general, $n \times n$ unitary matrix U can be written as

 $U = e^{iH}$ $H: n \times n$ hermitian matrix

From

$$\det U = e^{i T r H}$$

we get

$$TrH = 0$$
 if $detU = 1$

Thus $n \times n$ unitary matrices U can be written in terms of $n \times n$ traceless Hermitian matrices.

Note that Pauli matrices:

$$\sigma_1 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \quad , \quad \sigma_2 = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right) \quad , \quad \sigma_3 = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

is a complete set of 2×2 hermitian traceless matrices. We can use them to describe SU(2) matrices. Define $J_i = \frac{\sigma_i}{2}$. We can compute the commutators

$$\left[J_1,J_2
ight]=iJ_3$$
 , $\left[J_2,J_3
ight]=iJ_1$, $\left[J_3,J_1
ight]=iJ_2$

This is the Lie algebra of SU(2) symmetry. This is exactly the same as the commutation relation of angular momentum.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

Irrep of SU(2) algebra Define

$$J^2 = J_1^2 + J_2^2 + J_2^3$$
 , with property $[J^2, J_i] = 0$, $i = 1, 2, 3$

Also define

$$J_{\pm} \equiv J_1 \pm i J_2$$
 then $J^2 = rac{1}{2} (J_+ J_- + J_- J_+) + J_3^2$ and $[J_+, J_-] = 2 J_3$

For convenience, choose simultaneous eigenstates of J^2 , J_3 ,

$$J^2|\lambda,m
angle = \lambda|\lambda,m
angle$$
 , $\lambda_3|\lambda,m
angle = m|\lambda,m
angle$

From

$$\left[J_{+},J_{3}
ight]=-J_{+}$$

we get

$$(J_+J_3-J_3J_+)|\lambda,m\rangle = -J_+|\lambda,m\rangle$$

Or

$$J_3(J_+|\lambda,m\rangle) = (m+1)(J_+|\lambda,m\rangle)$$

Thus J_+ raises the eigenvalue from m to m+1 and is called raising operator. Similarly, J_- lowers m to m-1,

$$J_3(J_-|\lambda,m\rangle) = (m-1)(J_-|\lambda,m\rangle)$$

Since

$$J^2 \geq J_3^2$$
 , $\lambda-m^2 \geq 0$

we see that m is bounded above and below. Let j be the largest value of m, then

 $J_+|\lambda,j
angle=0$

Then

$$0 = J_{-}J_{+}|\lambda,j\rangle = (J_{3}^{2} - J_{3}^{2} - J_{3})|\lambda,j\rangle = (\lambda - j^{2} - j)|\lambda,j\rangle$$

and

 $\lambda = j(j+1)$

Similarly, let j' be the smallest value of m, then

$$J_{-}|\lambda,j'\rangle = 0$$
 $\lambda = j'(j'-1)$

Combining these 2 relations, we get

$$j(j+1) = j'(j'-1) \Rightarrow j' = -j$$
 and $j-j' = 2j = integer$

We will use j, m to label the states. Assume the states are normalized,

$$\langle jm | jm' \rangle = \delta_{mm'}$$

Write

$$J_{\pm}|jm\rangle = C_{\pm}(jm)|j,m\pm 1\rangle$$

then

$$\begin{split} \langle jm|J_-J_+|jm\rangle &= |C_+(j,m)|^2\\ LHS &= \langle j,m|(J^2-J_3^2-J_3)|jm\rangle &= j(j+1)-m^2-m \end{split}$$

This gives

$$C_{+}(j,m) = \sqrt{(j-m)(j+m+1)}$$

э.

イロト イヨト イヨト イヨト

Similarly

$$C_{-}(j,m) = \sqrt{(j+m)(j-m+1)}$$

Summary: eigenstates $|jm\rangle$ have the properties

$$J_3|j,m
angle=m|j,m
angle$$
 $J_\pm|j,m
angle=\sqrt{(j\mp m)(j\pm m+1)|jm\pm 1}$, $J^2|j,m
angle=j(j+1)jm
angle$

 $J|j,m\rangle$, $m = -j, -j + 1, \cdots, j$ are the basis for irreducible representation of SU(2) group. From these relations we can construct the representation matrices. We will illustrate these by following examples.

3

イロン イ団 とくほと くほとう

Example: $j=rac{1}{2}$, $m=\pmrac{1}{2}$

$$J_{3} = \left|\frac{1}{2}, \pm \frac{1}{2} \left\langle = \pm \frac{1}{2} \right| \frac{1}{2}, \pm \frac{1}{2} \right\rangle$$
$$J_{+} \left|\frac{1}{2}, \frac{1}{2} \right\rangle = 0 \quad , \quad J_{+} \left|\frac{1}{2}, -\frac{1}{2} \right| = \left|\frac{1}{2}, \frac{1}{2} \right\rangle \quad , \quad J_{-} \left|\frac{1}{2}, \frac{1}{2} \right| = \left|\frac{1}{2}, -\frac{1}{2} \right\rangle \quad , \quad J_{-} \left|\frac{1}{2}, -\frac{1}{2} \right\rangle = 0$$

If we write

$$\frac{1}{2}, \frac{1}{2} \rangle = \alpha = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad |\frac{1}{2}, -\frac{1}{2} \rangle = \beta = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Then we can represent J's by matrices,

$$J_{3} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad J_{+} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad J_{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
$$J_{1} = \frac{1}{2}(J_{+} + J_{-}) = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad J_{2} = \frac{1}{2i}(J_{+} - J_{-}) = \frac{1}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

Within a factor of $\frac{1}{2},$ these are just Pauli matrices Summary:

Among the generator only J₃ is diagonal, — SU(2) is a rank-1 group

2 Irreducible representation is labeled by j and the dimension is 2j + 1

3 Basis states $|j, m\rangle$ $m = j, j - 1 \cdots (-j)$ representation matrices can be obtained from

$$J_3|j,m\rangle = m|j,m\rangle$$
 $J_{\pm}|j,m\rangle = \sqrt{(j \mp m)(j \pm m + 1)}|j,m\pm 1\rangle$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ - 目 - のへで

SU(2) and rotation group

The generators of SU(2) group are Pauli matrices

$$\sigma_1=\left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right) \ , \ \sigma_2=\left(\begin{array}{cc} 0 & -i\\ i & 0 \end{array}\right) \ , \ \sigma_3=\left(\begin{array}{cc} 1 & 0\\ 0 & -1 \end{array}\right)$$

Let $\vec{r} = (x, y, z)$ be arbitrary vector in R_3 (3 dimensional coordinate space). Define a 2 × 2 matrix h by

$$h = \vec{\sigma} \cdot \vec{r} = \begin{pmatrix} z & x - iy \\ x + iy & -z \end{pmatrix}$$

h has the following properties

1 $h^+ = h$ 2 Trh = 03 $det h = -(x^2 + y^2 + z^2)$

Let U be a 2×2 unitary matrix with detU = 1. Consider the transformation

$$h \rightarrow h' = UhU^{\dagger}$$

Then we have

 $\begin{array}{cccc}
\bullet & h'^+ = h' \\
\bullet & Trh' = 0 \\
\bullet & \det h' = \det h
\end{array}$

Properties (1)&(2) imply that h' can also be expanded in terms of Pauli matrices

$$h' = \vec{r}' \cdot \vec{\sigma} \cdot \vec{r} = (x', y', z')$$

det $h' = \det h \implies x'^2 + y'^2 + z'^2 = x^2 + y^2 + z^2$

Thus relation between \vec{r} and $\vec{r'}$ is a rotation. This means that an arbitrary 2 × 2 unitary matrix U induces a rotation in R_3 . This provides a connection between SU(2) and O(3) groups.

LFLI ()

Rotation group & QM

Rotation in R_3 can be represented as linear transformations on

$$\vec{r} = (x, y, z) = (r_1, r_2, r_3)$$
, $r_i \to r'_i = R_{ij}X_j$, $RR^T = 1 = R^TR$

Consider an arbitrary function of coordinates, $f(\vec{r}) = f(x, y, z)$. Under the rotation, the change in f

$$f(r_i) \rightarrow f(R_{ij}r_j) = f'(r_i)$$

If f = f' we say f is invariant under rotation, eg $f(r_i) = f(r)$, $r = \sqrt{x^2 + y^2 + z^2}$ In QM, we implement the rotation by

$$|\psi
angle
ightarrow |\psi'
angle=U|\psi
angle$$
, $O
ightarrow O'=UOU^{\dagger}$

so that

$$\Rightarrow \langle \psi' | O' | \psi'
angle = \langle \psi | O | \psi
angle$$

If O' = O, we say O is invariant under rotation

$$\rightarrow UO = OU [O, U] = 0$$

In terms of infinitesimal generators, we have

$$U = e^{-i\theta \vec{n} \cdot \vec{J}}$$

This implies

$$[J_i, O] = 0, i = 1, 2, 3$$

For the case where O is the Hamiltonian H, this gives $[J_i, H] = 0$. Let $|\psi\rangle$ be an eigenstate of H with eigenvaule E,

$$|H|\psi\rangle = E|\psi\rangle$$

then

$$(J_iH - HJ_i)|\psi\rangle = 0 \Rightarrow H(J_i|\psi\rangle) = E(J_i|\psi\rangle)$$

i.e $|\psi\rangle \& J_i|\psi\rangle$ are degenerate. For example, let $|\psi\rangle = |j, m\rangle$ the eigenstates of angular momentum, then $J_{\pm}|j.m\rangle$ are also eigenstates if $|\psi\rangle$ is eigenstate of H. This means for a given j, the degeneracy is $(2j \pm 1) \leq j \leq n$.

Global symmetry in Field Theory

Example 1: Self interacting scalar fields Consider Lagrangian,

$$\mathcal{L} = rac{1}{2} \left[\left(\partial_{\mu} \phi_{1}
ight)^{2} + \left(\partial_{\mu} \phi_{2}
ight)^{2}
ight] - rac{\mu^{2}}{2} \left(\phi_{1}^{2} + \phi_{2}^{2}
ight) - rac{\lambda}{4} \left(\phi_{1}^{2} + \phi_{2}^{2}
ight)^{2}$$

this is invariant under rotation in (ϕ_1, ϕ_2) plane, O(2) symmetry,

$$\left(\begin{array}{c} \phi_1 \\ \phi_2 \end{array} \right) \longrightarrow \left(\begin{array}{c} \phi_1' \\ \phi_2' \end{array} \right) = \left(\begin{array}{c} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right) \left(\begin{array}{c} \phi_1 \\ \phi_2 \end{array} \right)$$

 θ is independent of x^{μ} and is called **global** transformation. Physical consequences:

Mass degenercy

2 Relation between coupling constants

Noether's currrent: for $\theta \ll 1$.

$$\delta \phi_1 = - heta \phi_2$$
, $\delta \phi_2 = heta \phi_1$

and

$$J_{\mu} \sim \frac{\partial \mathcal{L}}{\partial \phi_{i}} \delta \phi_{i} = -\left[\left(\partial_{\mu} \phi_{1}\right) \phi_{2} - \left(\partial_{\mu} \phi_{2}\right) \phi_{1}\right]$$

This current is conserved,

$$\partial_{\mu}J^{\mu}=0$$

3

イロン イ団 とくほと くほとう

and conserved charge is

$$Q=\int d^3x J^0$$
,

and

$$\frac{dQ}{dt} = \int d^3x \frac{\partial J^0}{\partial t} = -\int d^3x \vec{\nabla} \cdot \vec{J} = -\int d\vec{S} \cdot \vec{J} = 0$$

Another way is to write

$$\phi = \frac{1}{\sqrt{2}} \left(\phi_1 + i \phi_2 \right)$$

and

$$\mathcal{L} = \partial_{\mu}\phi^{\dagger}\partial_{\mu}\phi - \mu^{2}\phi^{\dagger}\phi - \lambda\left(\phi^{\dagger}\phi\right)^{2}$$

This is a phase transformation,

$$\phi \longrightarrow \phi' = e^{-i\theta} \phi$$

This is called the U(1) symmetry. Charge conservation. is one such example. Approximate symmetries, e.g. lepton number, isospin, Baryon number, \cdots are probably realized in the form of global symmetries.

イロン イ団 とくほと くほとう

3

Example 2 : Yukawa interaction–Scalar field interacting with fermion field Lagrangian is of the form

$$\mathcal{L}=ar{\psi}(i\gamma^{\mu}\partial_{\mu}-m)\psi+rac{1}{2}\left(\partial_{\mu}\phi
ight)^{2}-rac{\mu^{2}}{2}\phi^{2}-rac{\lambda}{4}\phi^{4}+gar{\psi}\gamma_{5}\psi\phi$$

This Lagrangian is invariant under the U(1) transformation,

$$\psi
ightarrow \psi' = e^{ilpha}\psi, \qquad \phi
ightarrow \phi' = \phi$$

Here the fermion number is conserved. Note that if there are two such fermions, ψ_1, ψ_2 with same transformation, then the Yukawa interaction will be

$$\mathcal{L}_{Y} = g_1 \bar{\psi}_1 \gamma_5 \psi_1 \phi + g_2 \bar{\psi}_2 \gamma_5 \psi_2 \phi$$

Thus we have two independent couplings g_1, g_2 , one for each fermion. **Example 3 :** Global non-abelian symmetry Consider the case where ψ is a doublet and ϕ a singlet under SU(2),

$$\psi = \left(egin{array}{c} \psi_1 \ \psi_2 \end{array}
ight)$$

and under SU(2)

$$\psi \to \psi' = \exp i\left(rac{ec{ au} \cdot ec{lpha}}{2}
ight)\psi, \qquad \phi \to \phi' = \phi$$

3

イロン イ団と イヨン イヨン

 $\stackrel{\rightarrow}{\alpha}=(\alpha_1,\alpha_2,\alpha_3)$ are real parameters. The Lagrangian

$$\mathcal{L}=ar{\psi}(i\gamma^{\mu}\partial_{\mu}-m)\psi+rac{1}{2}\left(\partial_{\mu}\phi
ight)^{2}-rac{\mu^{2}}{2}\phi^{2}-rac{\lambda}{4}\phi^{4}+gar{\psi}\psi\phi$$

is SU(2) invariant. The Noether's currents are of the form,

$$ec{J}=ar{\psi}(\gamma^\murac{ec{ au}}{2})\psi$$

and conserved charges are

$$Q^i = \int \psi^{\dagger}(\frac{\tau_i}{2})\psi$$

One can verify that

$$\left[Q^{i},Q^{j}\right]=i\varepsilon^{ijk}Q^{k}$$

which is the SU(2) algebra.

2

イロン イ団と イヨン イヨン

Local Symmetry

Local symmetry: transformation parameters, e.g. angle θ , depend on x^{μ} . This originates from electromagnetic theory.

Maxwell Equations:

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}, \qquad \qquad \vec{\nabla} \cdot \vec{B} = 0$$
$$\vec{\nabla} \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0, \qquad \qquad \frac{1}{\mu_0} \vec{\nabla} \times \vec{B} = \varepsilon_0 \frac{\partial \vec{E}}{\partial t} + \vec{J}$$

Introduce ϕ , A to solve those equations without source,

$$\vec{B} = \vec{\nabla} \times \vec{A}, \qquad \vec{E} = -\vec{\nabla}\phi - \frac{\partial \vec{A}}{\partial t}$$

These are not unique because of gauge tranformation

$$\phi \longrightarrow \phi - \frac{\partial \alpha}{\partial t}, \qquad \overrightarrow{A} \longrightarrow \overrightarrow{A} + \overrightarrow{\nabla} \alpha$$

or

$$A_{\mu} \longrightarrow A_{\mu} - \partial_{\mu} \alpha$$

will give the same electromagnetic fields

In quantum mechanics, Schrodinger equation for charged particle,

$$\left[\frac{1}{2m}\left(\frac{\hbar}{i}\overrightarrow{\nabla}-e\overrightarrow{A}\right)^2-e\phi\right]\psi=i\hbar\frac{\partial\psi}{\partial t}$$

イロト イヨト イヨト イヨト

This requires transformation of wave function,

$$\psi \longrightarrow \exp\left(i\frac{e}{\hbar}\alpha\left(x\right)\right)\psi$$

to get same physics.

Thus gauge transformation is connected to symmetry (local) transformation.

メロト メポト メヨト メヨト

2

16 / 22

In field theory, gauge fields are needed to contruct covariant derivatives.

1) Abelian symmetry

Consider Lagrangian with global U(1) symmetry,

$$\mathcal{L} = \left(\partial_{\mu}\phi\right)^{\dagger}\left(\partial^{\mu}\phi\right) + \mu^{2}\phi^{\dagger}\phi - \lambda\left(\phi^{\dagger}\phi\right)^{2}$$

Suppose phase transformation depends on x^{μ} ,

$$\phi \rightarrow \phi' = e^{ig\alpha(x)}\phi$$

The derivative transforms as

$$\partial^\mu \phi o \partial^\mu \phi' = e^{i lpha(x)} \left[\partial^\mu \phi + i g \left(\partial^\mu lpha
ight) \phi
ight]$$
 ,

not a phase transformation. Introduce gauge field A^{μ} , with transformation

$$A^{\mu} \rightarrow A'^{\mu} = A^{\mu} - \partial^{\mu} \alpha$$

The combination

$$D^{\mu}\phi \equiv (\partial^{\mu} - igA^{\mu})\phi$$
, covariant derivative

will be transformed by a phase,

$$D^{\mu}\phi' = e^{ig\alpha(x)} \left(D^{\mu}\phi\right)$$

and the combination

 $D_\mu \phi^\dagger D^\mu \phi$

is invarianat under local phase transformation.

3

・ロト ・回ト ・ヨト ・ヨト

Define anti-symmetric tensor for the gauge field

$$(D_{\mu}D_{\nu} - D_{\nu}D_{\mu})\phi = gF_{\mu\nu}\phi, \quad \text{with} \quad F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

We can use the property of the covariant derivative to show that

$$F'_{\mu\nu} = F_{\mu\nu}$$

Complete Lagragian is

$$\mathcal{L} = D_{\mu}\phi^{\dagger}D^{\mu}\phi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - V(\phi)$$

where $V(\phi)$ does not depend on derivative of ϕ .

- mass term $A^{\mu}A_{\mu}$ is not gauge invariant \Rightarrow massless particle \Rightarrow long range force
- coupling of gauge field to other field is universal

2

イロン イ団と イヨン イヨン

2) Non-Abelian symmetry-Yang Mills fields

1954: Yang-Mills generalized U(1) local symmetry to SU(2) local symmetry.

Consider an isospin doublet $\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$

Under SU(2) transformation

$$\psi(x) \rightarrow \psi'(x) = \exp\{-\frac{i\vec{\tau}\cdot\vec{\theta}}{2}\}\psi(x)$$

where $\vec{\tau} = (\tau_1, \tau_2, \tau_3)$ are Pauli matrices,

$$\sigma_1 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \quad , \quad \sigma_2 = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right) \quad , \quad \sigma_3 = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

with

$$\left[\frac{\tau_i}{2}, \frac{\tau_j}{2}\right] = i\epsilon_{ijk}\left(\frac{\tau_k}{2}\right)$$

Start from free Lagrangian

$$\mathcal{L}_0 = \bar{\psi}(x)(i\gamma^\mu\partial_\mu - m)\psi$$

which is invariant under global SU(2) transformation where $\vec{\theta} = (\theta_1, \theta_2, \theta_3)$ are indep of x_{μ} . For local symmetry transformation, write

$$\psi(x) \rightarrow \psi'(x) = U(\theta)\psi(x) \qquad U(\theta) = \exp\{-\frac{i\vec{\tau} \cdot \vec{\theta(x)}}{2}\}$$

Derivative term

$$\partial_{\mu}\psi(x) \rightarrow \partial_{\mu}\psi'(x) = U\partial_{\mu}\psi + (\partial_{\mu}U)\psi$$

イロン イ団 とくほと くほとう

is not invariant. Introduce gauge fields $ec{A_{\mu}}$ to form the covariant derivative,

$$D_{\mu}\psi(x) \equiv (\partial_{\mu} - ig \frac{\vec{\tau} \cdot \vec{A_{\mu}}}{2})\psi$$

Require that

$$[D_{\mu}\psi]' = U[D_{\mu}\psi]$$

Or

$$(\partial_{\mu} - igrac{ec{ au}\cdotec{A_{\mu}}'}{2})(U\psi) = U(\partial_{\mu} - igrac{ec{ au}\cdotec{A_{\mu}}}{2})\psi$$

This gives the transformation of gauge field,

$$\boxed{\frac{\vec{\tau}\cdot\vec{A_{\mu}}'}{2}} = U(\frac{\vec{\tau}\cdot\vec{A_{\mu}}}{2})U^{-1} - \frac{i}{g}(\partial_{\mu}U)U^{-1}$$

We use covariant derivatives to construct field tensor

$$\begin{split} D_{\mu}D_{\nu}\psi &= (\partial_{\mu} - ig\frac{\vec{\tau}\cdot\vec{A_{\mu}}}{2})(\partial_{\nu} - ig\frac{\vec{\tau}\cdot\vec{A_{\nu}}}{2})\psi = \partial_{\mu}\partial_{\nu}\psi - ig(\frac{\vec{\tau}\cdot\vec{A_{\mu}}}{2}\partial_{\nu}\psi + \frac{\vec{\tau}\cdot\vec{A_{\nu}}}{2}\partial_{\mu}\psi) \\ &- ig\partial_{\mu}(\frac{\vec{\tau}\cdot\vec{A_{\nu}}}{2})\psi + (-ig)^{2}(\frac{\vec{\tau}\cdot\vec{A_{\mu}}}{2})(\frac{\vec{\tau}\cdot\vec{A_{\nu}}}{2})\psi \end{split}$$

Antisymmetrize this to get the field tensor,

$$(D_{\mu}D_{\nu} - D_{\nu}D_{\mu})\psi \equiv ig(\frac{\vec{\tau}\cdot\vec{F_{\mu\nu}}}{2})\psi$$

20 / 22

then

$$\frac{\vec{\tau}\cdot\vec{F_{\mu\nu}}}{2} = \frac{\vec{\tau}}{2}\cdot\left(\partial_{\mu}\vec{A_{\nu}} - \partial_{\nu}\vec{A_{\mu}}\right) - ig\left[\frac{\vec{\tau}\cdot\vec{A_{\mu}}}{2}, \frac{\vec{\tau}\cdot\vec{A_{\nu}}}{2}\right]$$

Or in terms of components,

$$F^{i}_{\mu\nu} = \partial_{\mu}A^{i}_{\nu} - \partial_{\nu}A^{i}_{\mu} + g\epsilon^{ijk}A^{i}_{\mu}A^{k}_{\nu}$$

The the term quadratic in A is new in Non-Abelian symmetry. Under the gauge transformation we have

$$\vec{\tau}\cdot\vec{F_{\mu}\nu}'=U(\vec{\tau}\cdot\vec{F_{\mu}\nu})U^{-1}$$

イロン イロン イヨン イヨン

э.

21 / 22

Infinitesmal transformation $\theta(x) \ll 1$

$$\begin{split} A^{i/\mu} &= A^{\mu} + \epsilon^{ijk}\theta^{j}A^{k}_{\mu} - \frac{1}{g}\partial_{\mu}\theta^{j} \\ F^{/i}_{\mu\nu} &= F^{i}_{\mu\nu} + \epsilon^{ijk}\theta^{j}F^{k}_{\mu\nu} \end{split}$$

Remarks

- Again $A^a_\mu A^{a\mu}$ is not gauge invariant⇒gauge boson massless⇒long range force
- A^a_u carries the symmetry charge (e.g. color —)
- **(3)** The quadratic term in $F^{a\mu\nu} \sim \partial A \partial A + gAA$ is for asymptotic freedom.

Recipe for the construction of theory with local symmetry

- Write down a Lagrangian with local symmetry
- **(a)** Replace the usual derivative $\partial_{\mu}\phi$ by the covariant derivative $D_{\mu}\phi \sim (\partial_{\mu} igA_{\mu}^{a}t^{a})\phi$ where guage fields A_{μ}^{a} have been introduced.
- **3** Use the antisymmetric combination $(D_{\mu}D_{\nu} D_{\nu}D_{\mu})\phi \sim F^{a}_{\mu\nu}\phi$ to construct the field tensor $F^{a}_{\mu\nu}$ and add $-\frac{1}{4}F^{a}_{\mu\nu}F^{a\mu\nu}$ to the Lagrangian density