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Milestones of Weak Interaction

Q Neutrino and Nuclear § decay,
The e~ from nuclei decay,

(AZ) = (A Z+1)+e
have continuous energy spectrum. If basic mechanism were
n—p+e

the energy momentum conservation will require e~ to have a single energy. Pauli (1930)
postulated the presence of neutrino which carries away energy and momentum,

n—p+e +V,

@ Fermi Theory
Fermi (1934) proposed to write weak interaction in the form,

G
cpzjg

Fitting nuclear B decay reates give

[p(x)7un(x)][e(x)y"v(x)] + h.c. G : Fermi coupling constant

1075

Mz

Gr ~

M,y proton mass

This works very well for AJ = 0, B-decays of many nuclei.
(Institute) SM




n

Later, Gamow-Teller interaction was added

Lor = %[p(x)msnw[é(x)wvsve ()] + hec.

to account for AJ = 1 nuclear B decays.

© Parity violation and V - A theory
0 — T puzzle
In 1950's, two decays were observed,

0—nt+m, (even parity)

Tt +1 +71°, (odd parity)

while 0 and T have same mass, charge and spin. Hard to understand these if the parity is
a good symmetry.
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1956 : Lee and Yang proposed that parity is not conserved.
1957 : C. S. Wu showed that e~ in %9 Co decay has the property,

<; . ;> #0, ?, F spin and momentum of e~
This implies parity violation.

V-A theory (1958 Feynman and Gell-Mann, Sudarshan and Marshak, Sakurai)
As a result of parity violation, weak interaction was written with V — A currents,

Gr

Legp = \[J;J" + h.c.
where
I(x) = Jia(x) + Iha(x)
JMX) = eyt (1 — 5 )e + 17P,7A(1 — 51, leptonic current (1)
and

JA(x) = 19 (1 = 5)(cos B d + sin Bcs) hadronic current
¢ ¢ Cabibbo angle

Note that in V-A form, fermions are all left-handed.
Define

1
Y, = 5(1 —Y5)¥
Then we can simplify the weak currents,
JMx) = 207 el + 217“7)‘],& +
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Difficulties:
(1) Not renormalizable

In Fermi theory, 4 fermions interaction has dimension 6 and is not renormalizable. The higher
order graphs are more and more divergent. For example, in u decay,

+ oo

il 59y

(2) Violate unitarity
The tree amplitude for v, + e — p +ve has only J = 1 partial wave at high energies and cross

section has the form,
o(vye) = G2s, S=2m.E

On the other hand, unitarity for J=1 cross section is

1
0(J71)<§
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Thus o(vye) violates unitarity for E > 300 GeV. Since unitarity comes from conservation of
probablity, this violation is unacceptable.
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Intermidate Boson Theory(IVB)
In analogy with QED, introduce W to couple to the V-A current

Lw = g(JWF+h.c.)

For example, the pu decay is mediated by W-exchange.

%

Gply2=gt /MY,

_g]“/+

M2, ghv

WH "z, when |k, | < My

2 G
This reproduces 4-fermion interaction with §__ 5F

M, = V2
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In this theory, v, + e — i + Ve no longer violates unitarity. But the violation of unitarity shows
up in
v - W W

and the theory is still non-renormalizable.

(Institute) SM




Construction of SU(2)xU(1) model

Idea : combine local symmetry with symmetry breaking
Choice of group
In IVB theory,

Lw =g(JyW" +h.c)

For simplicity neglect all other fermions except v, e

J}l = 177;4(1 - 75)6

In electromagnetic interaction, we have
Lem = eJﬁ’”A", where Jim = ey,e

Define electromagnetic and weak charges as the intergals
1 3 1 3, .t +
T+:§/deo(x):5/dxv(1—75)6, T =(T.)

Q= /d3xJ§’"(X) = —/d3xe+e
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Compute the commutator [T4, T_] = 2T3 and
1
o= [ XA -1s)v—e'1-15)e] £ Q

These 3 charges, T4+, T and Q don't form a SU(2) algebra. Note weak charges T4 have V — A
form while the em charge Q is pure vector.
At this point, there are 2 alternatives:

@ Introduce another guage boson coupled to T3. This leads to group SU(2) x U (1). This is
the choice we will adapt eventually.

@ Add new fermions such that T4, T_ and Q do form a SU(2) algebra (Georgi and Glashow

1972) e.g.
1 EY
5(1775) Vecosa + Nsina
o
1 £l
sA+rs) | N
e

and a singlet

1
—(14+795) (Ncosa —vesina
2 5
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so that weak charge is

T+ = %/‘d:‘;x [ET(1—15) (vecosa+ Nsina)]

+ (vecosa+ Nsina) (1 —v5)e+ET (1 +95) N+ N (1+75)e

We can verify that
[T T-]=2Q

with
Q= /d3X [E*E — efe]

Clearly, here only electromagnetic current is neutral and is ruled out by the discoveries of
neutral weak current reactions in 1973.
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Now choose gauge group to be SU (2) xU (1). The Lagrangian for the gauge fields is

1. ; 1
L= —ZF”‘VF}’W 2 GM Gy
where ) ) ) o
Fio = 0 A, — DA} + ge A Af SU(2) gauge fields
Guy = 9y By — 9By U(1) gauge field
Fermions

Clearly, from structure of weak charged current given in Eq(1) v, e form a doublet under SU(2),
_ v
"= < eL >

T, = /(vzreL)d3x, T = /(ezrl/L)d3x, Q= /(ezreL + e‘f{eR)

Then

Note that 1
Q—Tz = /[_E(VzrVL + ezreL) — e;EeR]d’jx

We can show that
[@Q—-Ts3,T;]=0, i=1,23
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Take @ — T3 to be U(1) charge Y =2(Q — T3), called weak hypercharge. The Y charges for

fermions are

L:(”) Yy = -1, er Y =-2

Lagrangian for gauge coupling is

Lo =1 iv"Dyly+ Iriv" Dylg

where .

Dy = (9y — ig? Ay _ ig/ng)tp
For example,

Dol = 0y —ig " —ig' Y B
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Spontaneous Symmetry Breaking
Symmetry braking pattern we want is SU(2) x U(1) — U(1)em. Choose scalar fields in SU(2)
doublet with hypercharge Y =1,

Lagrangian contaning ¢ is,

where

and
V(§) = -2+ A9 9)?

Coupling between leptons and scalar field ¢,

L4 = fZL¢eR + h.c.

Spontaneous symmetry breaking is generated by the vaccum expectation value

2
<4’>°:<0‘4"0>:%<8> with v = "7
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Write the scalar field in the form

T

. 0 5 iE(x
¢(x) = U(@) ( v (x) ) where U(¢) :exp[&} (3)

v

Gauge Transformation
We can then simplify the form of scalar by a gauge transformation

Ca 1 0

¢ =0@0=35 (50 )
TR e A L uu
= U@ @ - L)

field E(x) disappears from Lagrangian because of gauge invariance. From L4 (Yukawa coupling),
VEV of the scalar field gives

(x
2

Lo=Ff——(L<¢>er+hc)+FI (5 eq+hc)

NE

1
V2

the electron is now massive withs

Mass spectrum
We now list the mass spectrum of the theory after the spontaneous symmetry breaking:
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@ Fermion mass

me =

-
SI3

@ Scalar mass(Higgs)
! 2,2 3, A4 V2
V(@) =win" +Avip + = my =2y
© Gauge boson masses

From covariant derivative in L3

2 z. A B . Ak "B'n
Vit p, 8 T g (0
L=t ST E e = (1))

we get the mass terms for the gauge bosons,
V2 opoale 22 3 "B \2
Ly = A ()" + (A + (6Au — & Bu)™} +
_ 1
= MﬁvWH‘Wy +§M§ZVZ,4+---

where

. g°v
(A} —iA2), M, =
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_ "3 _ _ 2
Z, = g2+g/2(gA gBy), M3 2 v
The field
A, = L (A48,
2%+ g2 & A &5y

is massless photon.
For convience we define

!
tanfy = & Ow : Weinberg angle or weak mixing angle
g
Then we can write

2.2
v
g sec? Oy

Z, = cos GWA;; —sinfy By M% =

Ay =sin GWA?l —cosfw By

Note that there is a relation of the form,

oMy
0= M2 cos? =
5 cos? Oy

which is a consequence of the doublet nature of the scalar fields.

The weak interactions mediated by W and Z bosons can be read out from Eq(2)
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@ Charged current

g . 1_
Lec = ﬁ(J;WW + h.c.) J;; = J; + IJ; = §v'yy(l —v5)e

Again to get 4-fermion interaction as low energy limit, we require

g _ Gr
g, " Va2

v= @ ~ 246Gev
V Gk

This is usually referred to as the weak scale.

which implies that
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@ Neutral Current
The Largrangian for the neutral currents is

/

Luc gJ3A3"+ J) Bl = eJSmAl + 9 —= i7"
w

where
e=gsinfBy,

and
JE =2} —sin? 0y S5

is the weak neutral current. We can define the weak neutral charge as
z _ /Jozd3x: (T3 —sin2 6w Q)

So the coupling strength of fermions to Z-boson is proportional to T3 —sin? 0y Q.
In particluar, Z boson can contribute to the scattering

Vet € = Vet e
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e—> >—¢

The measurement of this corss section in the 1970's give sin 8 ~ 0.22. This yields My, ~ 80
GeV and Mz ~ 90 GeV.
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Generalization to more than one family.
From 4-fermion and IVB theory, the form of weak currents of leptons and hadrons gives the
following multiplets structure,

Ve vy u
, €R, uR,dr,s
<e>L (V)L R PR (df))L R SRR

dy = cosBOcd +sinfcs

where

The neutral current in the down quark sector is

ENC = [89’}’;,( +sm GC )dgL —sin GW (dR'YVdR +SR’)/,ASR)]ZV
1 .5 - _ . - _
= (75 -+ sin 9W§)[(dL')‘]4dL+5L'YFSL)+S|"0W cosOW(dL'yysLJrsL'yydL)Jr

The term (ElL’)/#SL +§L"r”dL) gives rise to AS = 1 neutral current processes, e.g. K| — ™ +pu~
with same order of magnitude as charged current interaction. But experimentally,

+ _
o TKL—p"+p7) 5o

'K+t —pu+v)
Thus we can not have AS =1 neutral curent process at the same order of magnitude as the
charged current process.
GIM mechanism
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Glashow, lliopoulos and Maiani (1970) suggested a 4-th quark, the charm quark ¢, which
couples to the orthogonal combination sy = —sinf.d 4 cosf.s so that

(i) (2,

As a result , the AS =1, neutral current is canceled out. The new current is of the form

1 1. _ 1 1 . 1 1 . - -
dg(*i +3 sin® 0w )7, dp +59(f§ +3 sin® 0w ) 7,50 = (7E +3 sin® 0w ) (dy,d +57,5)

which conserves the strangeness. This avoids the conflict with exp on K, — utu~

Quark mixing

Before spontaneous symmetry braking, fermions are all massless because, and ¥ have
different quantum numbers under SU (2) x U (1) i.e. mass term (i, ¢p + h.c.) is not invariant
under SU(2) x U(1). For more than one doublets, ,5,9; have same quantum numbers under
SU(2) x U(1) group we call "weak eigenstates". After spontaneous symmetry breaking,
fermions obtain their masses through Yukawa coupling.

!
Ly = (fjgiur; + f;8idr))¢ + h.c.

Renormalizability requires all possible terms consistent with SU (2) x U (1) symmetry. Since f;,

fU/ are arbitrary, fermion mass matrices are not diagonal.

mass eigenstates # weak eigenstates
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The mass matrices in up and down sectors are

(u) _ (d) _

v Vv
mp =g M =i

These matrices which are sandwiched between left and right handed fields can be diagonalized
by bi-unitary transformations, i.e. given a mass matrix mj;,there exits unitary matrices S and
T such that

StmT =my

is diagonal. S is the unitary matrix which diagnoalizes the hermitian combination mm™, i. e.
St (mm"HSs = m?

Biunitary transformation

Write )
2 M 2
m§ = mj ,
m3
Define
my
mg = my
m3
and

H= SmdSJr hermitian
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Define a matrix V by
V=Hlm

Then
Wh=H 1 mm'H ! = H71Sm2StH = HT1H?H 1 =1

So V is unitary and we have
SYHS = my, = Stmvts = my

Or
StmT = my, with T =Vv*s

If we write the doublets, (weak eigenstates) as

1L = / 2L = ’
d L s L

These weak eigenstates are related to mass eigenstates by unitary transformations,
' d d
u u
($)=s(2). (%)-=(?)
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Note that in the coupling to charged gauge boson W*, we have
Lw = LW, [, 4"t G tt
w = —=Wulq "7 qu + Gyt gol] + hc.
V2
and is invariant under unitary transformation in gy, g, space, i.e.
I

91 :v( qiL > wt=1=vty

qoy qzL
We can use this feature to put all mixing in the down quark sector,

CI,/'L=<U//),( C//), where d,, :U(d>
d L S L s s

Here U is a 2 X 2 unitary matrix. Clearly, we can extend this to 3 generations with result

Now U is a 3 x 3 unitary matrix, usually called the Cabibbo-Kobayahsi-Maskawa (CKM) matrix.
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CP violation Phase

CP violetion can come form complex coupling to gauge bosons. The coupling of W* to quarks
is governed by the 3 X 3 unitary matrix U . This unitary matrix U can have many complex
entries. However, in diagonalzing mass matrices, S*(mm*)S = mg. There is arbitrariness in the

matrix S, in the form of diagonal phases i.e. if S diagonalizes the mass matrix, so does s’

eml

We can then redefine the quark fields to get rid of some phases in U. It turns out that for nxn
unitary matrix, number of independent physical phases left over is

(n=1)(n—2)
2

Thus to get CP violetion we need 3 generations or more (Kobayashi Mskawa). Here we give a
constructive proof of this statement. Start with a first doublet written as,

u
L= ( Ur1d + Ugas + Uisb )

If U11 has phase 6, -
Uir = Rire”, R11 real
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then J can be absorbed in the redefiniton of the u—quark

, o
u—u =ue "

and we can write
is u'
Qi =€ < Rird + Ujys + Ul3b )

Similarly, we can factor out the complex phases of Uz; and Usz; by redefinition of ¢ and t quark
fields. These overall phases are immaterial. Finally we can absorb two more phases of Uz and
Uiz by a redefinition of the s and b fields. The doublets now take the form

u/ C!

t/
( R31d+R326f53S+R33ef54b )L’

Now we have reduced the number of parameters to 13. The normalization conditons of each
down-like state gives 3 real conditions and orthogonality conditions among different states give 6
real conditions on the parameters, Now we are down to 4 parameters. Since we need 3
parameters for the real orthogonal matrix, we end up with one independent phase.
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Flavor consevation in neutral current interaction
The coupling of neutral Z boson to the fermions conserve flavors. This can be illustrated as
follows. Write the neutral currents in terms of weak eigenstates,

J;lz = Zﬂwﬂ [T’S (¥;) — sin? 0w Q (‘/’i)] P;

i

Separate into left- and right-handed fields and distingush the up and down components,

_ 1 . 2 =/ 1 . 1
JVZ = Z(ui,—’yﬂ {5 —sin 6y (5)} u’L,—&-dL,-’yll {—5 +5sin? Qyy (g)} dy;

_r . 2 ! . 1
+pivy {— sin? 8y <§>] upi + dRivy {5|n29W <§>J dp;
Since weak eigen states gj; and mass eigen states g are related by unitary matries,
up; = U (ur) uej

We see tha unitary matrices cancel out in the combination, E’L,-u’u so that the neutral current in
terms of mass eigenstates has the same form as the one in terms of weak eigenstates. Thus it

conserves all quark flavor. Note this feature is due to the fact that all quarks with same helicity
and electric charge have the same quantum number with repect to SU (2) x U (1) gauge group.
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