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Milestones of Weak Interaction

1 Neutrino and Nuclear β decay,
The e� from nuclei decay,

(A,Z )! (A,Z + 1) + e�

have continuous energy spectrum. If basic mechanism were

n ! p + e�

the energy momentum conservation will require e� to have a single energy. Pauli (1930)
postulated the presence of neutrino which carries away energy and momentum,

n ! p + e� +
_
νe

2 Fermi Theory
Fermi (1934) proposed to write weak interaction in the form,

LF =
GFp
2
[p̄(x )γµn(x )][ē(x )γ

µν(x )] + h.c . GF : Fermi coupling constant

Fitting nuclear β decay reates give

GF '
10�5

M 2
p
, Mp proton mass

This works very well for ∆J = 0, β-decays of many nuclei.
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Later, Gamow-Teller interaction was added

LGT =
GFp
2
[p̄(x )γµγ5n(x )][ē(x )γ

µγ5νe (x )] + h.c .

to account for ∆J = 1 nuclear β decays.

3 Parity violation and V - A theory
θ � τ puzzle
In 1950�s, two decays were observed,

θ ! π+ + π�, (even parity)

τ ! π+ + π� + π0, (odd parity)

while θ and τ have same mass, charge and spin. Hard to understand these if the parity is
a good symmetry.
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1956 : Lee and Yang proposed that parity is not conserved.
1957 : C. S. Wu showed that e� in 60Co decay has the property,D!

σ �!p
E
6= 0, !

σ ,
!
p spin and momentum of e�

This implies parity violation.
V-A theory (1958 Feynman and Gell-Mann, Sudarshan and Marshak, Sakurai)
As a result of parity violation, weak interaction was written with V � A currents,

Le¤ =
GFp
2
J †

µJ
µ + h.c .

where
Jλ(x ) = Jl λ(x ) + Jh λ(x )

Jλ
l (x ) =

_
νeγλ(1� γ5)e +

_
νµγλ(1� γ5)µ, leptonic current (1)

and
Jλ
h (x ) =

_
uγλ(1� γ5)(cos θcd + sin θc s) hadronic current

θc : Cabibbo angle

Note that in V-A form, fermions are all left-handed.
De�ne

ψL �
1
2
(1� γ5)ψ

Then we can simplify the weak currents,

Jλ
l (x ) = 2ν̄eLγλeL + 2ν̄µLγλµL + ...
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Di¢ culties:
(1) Not renormalizable

In Fermi theory, 4 fermions interaction has dimension 6 and is not renormalizable. The higher
order graphs are more and more divergent. For example, in µ decay,

(2) Violate unitarity
The tree amplitude for νµ + e ! µ+ νe has only J = 1 partial wave at high energies and cross
section has the form,

σ(νµe) � G 2F S , S = 2meE

On the other hand, unitarity for J=1 cross section is

σ(J = 1) <
1
S
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Thus σ(νµe) violates unitarity for E � 300 GeV . Since unitarity comes from conservation of
probablity, this violation is unacceptable.
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Intermidate Boson Theory(IVB)
In analogy with QED, introduce W to couple to the V-A current

LW = g (JµW µ + h.c .)

For example, the µ decay is mediated by W-exchange.

Since weak interaction is short range, MW 6= 0. From W-boson propagator

�g µν +
kµk ν

M 2
W

k 2 �M 2
W

! g µν

M 2
W

when jkµj � MW

This reproduces 4-fermion interaction with
g 2

M 2
W
=
GFp
2
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In this theory, νµ + e ! µ+ νe no longer violates unitarity. But the violation of unitarity shows
up in

ν+ ν̄ ! W + +W �

and the theory is still non-renormalizable.
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Construction of SU(2)�U(1) model

Idea : combine local symmetry with symmetry breaking
Choice of group
In IVB theory,

LW = g (JµW µ + h.c )

For simplicity neglect all other fermions except ν, e

Jµ = ν̄γµ(1� γ5)e

In electromagnetic interaction, we have

Lem = eJ emµ Aµ, where J emµ = ēγµe

De�ne electromagnetic and weak charges as the intergals

T+ =
1
2

Z
d 3xJ0(x ) =

1
2

Z
d 3x ν†(1� γ5)e , T� = (T+)†

Q =
Z
d 3xJ em0 (x ) = �

Z
d 3xe†e
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Compute the commutator [T+,T�] = 2T3 and

T3 =
1
4

Z
d 3x [ν†(1� γ5)ν� e†(1� γ5)e ] 6= Q

These 3 charges, T+,T� and Q don�t form a SU (2) algebra. Note weak charges T� have V �A
form while the em charge Q is pure vector.
At this point, there are 2 alternatives:

1 Introduce another guage boson coupled to T3. This leads to group SU (2)�U (1) . This is
the choice we will adapt eventually.

2 Add new fermions such that T+,T� and Q do form a SU(2) algebra (Georgi and Glashow
1972) e.g.

1
2
(1� γ5)

0@ E+

νe cos α+N sin α
e�

1A
1
2
(1+ γ5)

0@ E+

N
e�

1A
and a singlet

1
2
(1+ γ5) (N cos α� νe sin α)

(Institute) SM 10 / 28



so that weak charge is

T+ =
1
2

Z
d 3x

�
E+ (1� γ5) (νe cos α+N sin α)

�
+ (νe cos α+N sin α) (1� γ5) e + E

+ (1+ γ5)N +N
† (1+ γ5) e

We can verify that
[T+,T�] = 2Q

with

Q =
Z
d 3x

h
E †E � e†e

i
Clearly, here only electromagnetic current is neutral and is ruled out by the discoveries of
neutral weak current reactions in 1973.
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Now choose gauge group to be SU (2) �U (1). The Lagrangian for the gauge �elds is

L = � 1
4
F iµνF iµν �

1
4
G µνGµν

where
F iµν = ∂µAiν � ∂νAiν + g εijkAjµA

k
ν SU (2) gauge �elds

Gµν = ∂µBν � ∂µBµ U (1) gauge �eld

Fermions
Clearly, from structure of weak charged current given in Eq(1) ν, e form a doublet under SU(2),

lL =
�

νL
eL

�
Then

T+ =
Z
(ν+L eL)d

3x , T� =
Z
(e+L νL)d

3x , Q =
Z
(e+L eL + e

+
R eR )

Note that

Q � T3 =
Z
[� 1
2
(ν+L νL + e

+
L eL)� e

+
R eR ]d

3x

We can show that
[Q � T3,Ti ] = 0 , i = 1, 2, 3
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Take Q � T3 to be U (1) charge Y � 2(Q � T3), called weak hypercharge. The Y charges for
fermions are

lL =
�

νL
eL

�
Y = �1, eR Y = �2

Lagrangian for gauge coupling is

L2 = l̄L iγνDν ll + l̄R iγ
νDν lR (2)

where

Dνψ = (∂ν � ig
~τ �~Aν

2
� ig 0 Y

2
Bν)ψ

For example,

Dν lL = (∂ν � ig
~τ �~Aν

2
� ig 0 Y

2
Bν)lL
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Spontaneous Symmetry Breaking
Symmetry braking pattern we want is SU (2)� U (1)! U (1)em . Choose scalar �elds in SU(2)
doublet with hypercharge Y = 1,

φ =

�
φ†

φ0

�
, Y = 1

Lagrangian contaning φ is,
L3 = (Dµφ)†(Dµφ)� V (φ)

where

Dµφ = (∂µ �
ig
2
~τ � ~Aµ �

ig
0

2
Bµ)φ

and
V (φ) = �µ2φ†φ+ λ(φ†φ)2

Coupling between leptons and scalar �eld φ,

L4 = f
_
LLφeR + h.c .

Spontaneous symmetry breaking is generated by the vaccum expectation value

< φ >0= h0j φ j0i =
1p
2

�
0
v

�
with v =

r
µ2

λ
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Write the scalar �eld in the form

φ(x ) = U�1(~ξ)

 
0

v+η(x )p
2

!
where U (~ξ) = exp[

i~ξ(x ) �~τ
v

] (3)

Gauge Transformation
We can then simplify the form of scalar by a gauge transformation

φ
0
= U (~ξ)φ =

1p
2

�
0

v + η(x )

�

~τ �~A0µ
2

= U (~ξ)
~τ �~Aµ

2
U�1(~ξ)� i

g
(∂µU )U�1

�eld ~ξ(x ) disappears from Lagrangian because of gauge invariance. From L4 (Yukawa coupling),
VEV of the scalar �eld gives

L4 = f
1p
2
(l̄L < φ > eR + h.c .) + f

η(x )p
2
(
_
e LeR + h.c .)

the electron is now massive withs

me =
fp
2
v

Mass spectrum
We now list the mass spectrum of the theory after the spontaneous symmetry breaking:
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1 Fermion mass

me =
fvp
2

2 Scalar mass(Higgs)

V (φ
0
) = µ2η2 + λvη3 +

λ

4
η4 ! mη =

p
2µ

3 Gauge boson masses
From covariant derivative in L3

L3 =
v 2

2
χ†(g

~τ �~A0µ
2

+
g
0
B
0
µ

2
)(g
~τ �~A0µ
2

+
g
0
B
0µ

2
)χ+ � � � , χ =

�
0
1

�
we get the mass terms for the gauge bosons,

L3 =
v 2

8
fg 2 [(A1µ)2 + (A2µ)2 ] + (gA3µ � g

0
Bµ)

2g+ � � �

= M 2
WW

+µW �
µ +

1
2
M 2
ZZ

µZµ + � � �

where

W +
µ =

1p
2
(A1µ � iA2µ), M 2

W =
g 2v 2

4
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Zµ =
1p

g 2 + g 02
(g

0
A3 � gBµ), M 2

Z =
g 2 + g

02

4
v 2

The �eld

Aµ =
1p

g 2 + g 02
(g

0
A3µ + gBµ)

is massless photon.
For convience we de�ne

tan θW =
g
0

g
θW : Weinberg angle or weak mixing angle

Then we can write

Zµ = cos θW A
3
µ � sin θW Bµ M 2

Z =
g 2v 2

4
sec2 θW

Aµ = sin θW A
3
µ � cos θW Bµ

Note that there is a relation of the form,

ρ =
M 2
W

M 2
Z cos

2 θW
= 1

which is a consequence of the doublet nature of the scalar �elds.

The weak interactions mediated by W and Z bosons can be read out from Eq(2)
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1 Charged current

Lcc =
gp
2
(J †

µW
†µ + h.c .) J †

µ = J
1
µ + iJ

2
µ =

1
2

ν̄γµ(1� γ5)e

Again to get 4-fermion interaction as low energy limit, we require

g 2

8M 2
W
=
GFp
2

which implies that

v =

sp
2

GF
� 246Gev

This is usually referred to as the weak scale.
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2 Neutral Current
The Largrangian for the neutral currents is

LNC = gJ3µA3µ +
g
0

2
JYµ B

µ = eJ emµ Aµ +
g

cos θW
JZµ Z

µ

where
e = g sin θW ,

and
JZµ = J

3
µ � sin2 θW J

em
µ

is the weak neutral current. We can de�ne the weak neutral charge as

QZ =
Z
JZ0 d

3x = (T3 � sin2 θW Q )

So the coupling strength of fermions to Z-boson is proportional to T3 � sin2 θW Q .
In particluar, Z boson can contribute to the scattering

νe + e ! νe + e
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The measurement of this corss section in the 1970�s give sin2 θW � 0.22. This yields MW � 80
GeV and MZ � 90 GeV.
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Generalization to more than one family.
From 4-fermion and IVB theory, the form of weak currents of leptons and hadrons gives the
following multiplets structure,�

νe
e

�
L
,

�
νµ

µ

�
L

eR , µR

�
u
dθ

�
L

uR , dR , sR

where
dθ = cos θC d + sin θC s

The neutral current in the down quark sector is

LNC = [d̄θγµ(�
1
2
+ sin2 θC

1
3
)dθL � sin2 θW

1
3
(d̄RγµdR + s̄RγµsR )]Z

µ

= (� 1
2
+ sin2 θW

1
3
)[(d̄LγµdL + s̄LγµsL) + sin θW cos θW (d̄LγµsL + s̄LγµdL) + ...

The term
�
d̄LγµsL + s̄LγµdL

�
gives rise to ∆S = 1 neutral current processes, e.g. KL ! µ+ + µ�

with same order of magnitude as charged current interaction. But experimentally,

R =
Γ(KL ! µ+ + µ�)

Γ(K+ ! µ+ ν)
� 10�8

Thus we can not have ∆S = 1 neutral curent process at the same order of magnitude as the
charged current process.
GIM mechanism
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Glashow, Iliopoulos and Maiani (1970) suggested a 4-th quark, the charm quark c , which
couples to the orthogonal combination sθ = � sin θcd + cos θc s so that�

u
dθ

�
L
,

�
c
sθ

�
L

As a result , the ∆S = 1, neutral current is canceled out. The new current is of the form

d̄θ(�
1
2
+
1
3
sin2 θW )γµdθ + s̄θ(�

1
2
+
1
3
sin2 θW )γµsθ = (�

1
2
+
1
3
sin2 θW )(d̄γµd + s̄γµs)

which conserves the strangeness. This avoids the con�ict with exp on KL �! µ+µ�

Quark mixing
Before spontaneous symmetry braking, fermions are all massless becauseψL and ψR have
di¤erent quantum numbers under SU (2)� U (1) i.e. mass term (ψ̄LψR + h.c .) is not invariant
under SU (2)� U (1). For more than one doublets, ψiR ,ψiL have same quantum numbers under
SU (2)� U (1) group we call "weak eigenstates". After spontaneous symmetry breaking,
fermions obtain their masses through Yukawa coupling.

LY = (fij ḡiLuRj + f
0
ij ḡiLdRj )φ+ h.c .

Renormalizability requires all possible terms consistent with SU (2)� U (1) symmetry. Since fij ,,
f 0ij are arbitrary, fermion mass matrices are not diagonal.

mass eigenstates 6= weak eigenstates

(Institute) SM 22 / 28



The mass matrices in up and down sectors are

m(u)ij = fij
vp
2

m(d )ij = f
0
ij
vp
2

These matrices which are sandwiched between left and right handed �elds can be diagonalized
by bi-unitary transformations, i.e. given a mass matrix mij ,there exits unitary matrices S and
T such that

S †mT = md

is diagonal. S is the unitary matrix which diagnoalizes the hermitian combination mm+, i. e.

S †(mm†)S = m2d

Biunitary transformation
Write

m2d =

0@ m21
m22

m23

1A
De�ne

md =

0@ m1
m2

m3

1A
and

H = SmdS
† hermitian
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De�ne a matrix V by
V � H�1m

Then
VV † = H�1mm†H�1 = H�1Sm2dS

†H�1 = H�1H 2H�1 = 1

So V is unitary and we have

S †HS = md , =) S †mV †S = md

Or
S †mT = md , with T = V †S

� � � � � � -
If we write the doublets, (weak eigenstates) as

q1L =

 
u
0

d
0

!
L

q2L =

 
c
0

s
0

!
L

These weak eigenstates are related to mass eigenstates by unitary transformations, 
u
0

c
0

!
= Su

�
u
c

�
,

 
d
0

s
0

!
= Sd

�
d
s

�
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Note that in the coupling to charged gauge boson W �, we have

LW =
gp
2
Wµ[

_
q1Lγµτ†q1L + q̄2Lγµτ†q2L ] + h.c .

and is invariant under unitary transformation in q1L , q2L space, i.e. 
q
0
1L
q
0
2L

!
= V

�
q1L
q2L

�
VV † = 1 = V †V

We can use this feature to put all mixing in the down quark sector,

q
0
iL =

�
u
d
00

�
L
,

�
c
s
00

�
L
, where

 
d
00

s
00

!
= U

�
d
s

�

Here U is a 2� 2 unitary matrix. Clearly, we can extend this to 3 generations with result

qiL :
�

u
d
00

�
,

�
c
s
00

�
,

�
t
b
00

�
,

0B@ d
00

s
00

b
00

1CA = U

0@ d
s
b

1A
Now U is a 3� 3 unitary matrix, usually called the Cabibbo-Kobayahsi-Maskawa (CKM) matrix.
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CP violation Phase
CP violetion can come form complex coupling to gauge bosons. The coupling of W � to quarks
is governed by the 3� 3 unitary matrix U . This unitary matrix U can have many complex
entries. However, in diagonalzing mass matrices, S †(mm†)S = m2d . There is arbitrariness in the
matrix S, in the form of diagonal phases i.e. if S diagonalizes the mass matrix, so does S

0

S
0
= S

0BBB@
e iα1 . . . . . .
...

. . .
...

... . . . eαn

1CCCA
We can then rede�ne the quark �elds to get rid of some phases in U . It turns out that for n�n
unitary matrix, number of independent physical phases left over is

(n � 1)(n � 2)
2

Thus to get CP violetion we need 3 generations or more (Kobayashi Mskawa). Here we give a
constructive proof of this statement. Start with a �rst doublet written as,

q1L =
�

u
U11d + U12s + U13b

�
If U11 has phase δ,

U11 = R11e iδ, R11 real
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then δ can be absorbed in the rede�niton of the u�quark

u �! u 0 = ue�iδ

and we can write

q1L = e
iδ
�

u 0

R11d + U 012s + U
0
13b

�
Similarly, we can factor out the complex phases of U21 and U31 by rede�nition of c and t quark
�elds. These overall phases are immaterial. Finally we can absorb two more phases of U12 and
U13 by a rede�nition of the s and b �elds. The doublets now take the form�

u 0

R11d + R12s + R13b

�
L
,

�
c
0

R21d + R22e iδ1 s + R23e iδ2b

�
L

,

�
t 0

R31d + R32e iδ3 s + R33e iδ4b

�
L
,

Now we have reduced the number of parameters to 13. The normalization conditons of each
down-like state gives 3 real conditions and orthogonality conditions among di¤erent states give 6
real conditions on the parameters, Now we are down to 4 parameters. Since we need 3
parameters for the real orthogonal matrix, we end up with one independent phase.
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Flavor consevation in neutral current interaction
The coupling of neutral Z boson to the fermions conserve �avors. This can be illustrated as
follows. Write the neutral currents in terms of weak eigenstates,

JZµ = ∑
i

_
ψiγµ

�
T3 (ψi )� sin2 θW Q (ψi )

�
ψi

Separate into left- and right-handed �elds and distingush the up and down components,

JZµ = ∑
i
(
_
u
0
Liγµ

�
1
2
� sin2 θW

�
2
3

��
u 0Li +

_
d
0
Liγµ

�
� 1
2
+ sin2 θW

�
1
3

��
d 0Li

+
_
u
0
Riγµ

�
� sin2 θW

�
2
3

��
u 0Ri +

_
d
0
Riγµ

�
sin2 θW

�
1
3

��
d 0Ri

Since weak eigen states qiL and mass eigen states q 0iL are related by unitary matries,

u 0Li = U (uL)ij uLj , � � �

We see tha unitary matrices cancel out in the combination,
_
u
0
Liu

0
Li so that the neutral current in

terms of mass eigenstates has the same form as the one in terms of weak eigenstates. Thus it
conserves all quark �avor. Note this feature is due to the fact that all quarks with same helicity
and electric charge have the same quantum number with repect to SU (2)� U (1) gauge group.
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